![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3362, base_ring=CyclotomicField(10))
M = H._module
chi = DirichletCharacter(H, M([4]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3362, base_ring=CyclotomicField(10))
M = H._module
chi = DirichletCharacter(H, M([4]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(2601,3362))
        pari:[g,chi] = znchar(Mod(2601,3362))
         
     
    
  \(\chi_{3362}(51,\cdot)\)
  \(\chi_{3362}(857,\cdot)\)
  \(\chi_{3362}(1533,\cdot)\)
  \(\chi_{3362}(2601,\cdot)\)
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\(1687\) → \(e\left(\frac{2}{5}\right)\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) | 
    
    
      | \( \chi_{ 3362 }(2601, a) \) | \(1\) | \(1\) | \(1\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(1\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)