Properties

Label 3362.857
Modulus $3362$
Conductor $41$
Order $5$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3362, base_ring=CyclotomicField(10)) M = H._module chi = DirichletCharacter(H, M([8]))
 
Copy content pari:[g,chi] = znchar(Mod(857,3362))
 

Basic properties

Modulus: \(3362\)
Conductor: \(41\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(5\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{41}(37,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3362.d

\(\chi_{3362}(51,\cdot)\) \(\chi_{3362}(857,\cdot)\) \(\chi_{3362}(1533,\cdot)\) \(\chi_{3362}(2601,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: 5.5.2825761.1

Values on generators

\(1687\) → \(e\left(\frac{4}{5}\right)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 3362 }(857, a) \) \(1\)\(1\)\(1\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{1}{5}\right)\)\(1\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{1}{5}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3362 }(857,a) \;\) at \(\;a = \) e.g. 2