sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3362, base_ring=CyclotomicField(10))
M = H._module
chi = DirichletCharacter(H, M([4]))
pari:[g,chi] = znchar(Mod(2601,3362))
\(\chi_{3362}(51,\cdot)\)
\(\chi_{3362}(857,\cdot)\)
\(\chi_{3362}(1533,\cdot)\)
\(\chi_{3362}(2601,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(1687\) → \(e\left(\frac{2}{5}\right)\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
\( \chi_{ 3362 }(2601, a) \) |
\(1\) | \(1\) | \(1\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(1\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) |
sage:chi.jacobi_sum(n)