sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3040, base_ring=CyclotomicField(8))
M = H._module
chi = DirichletCharacter(H, M([0,3,4,4]))
pari:[g,chi] = znchar(Mod(189,3040))
Modulus: | \(3040\) | |
Conductor: | \(3040\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(8\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3040}(189,\cdot)\)
\(\chi_{3040}(949,\cdot)\)
\(\chi_{3040}(1709,\cdot)\)
\(\chi_{3040}(2469,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((191,2661,1217,1921)\) → \((1,e\left(\frac{3}{8}\right),-1,-1)\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 3040 }(189, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(i\) | \(i\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(-i\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) |
sage:chi.jacobi_sum(n)