sage: H = DirichletGroup(3040)
pari: g = idealstar(,3040,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 1152 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{4}\times C_{72}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{3040}(191,\cdot)$, $\chi_{3040}(2661,\cdot)$, $\chi_{3040}(1217,\cdot)$, $\chi_{3040}(1921,\cdot)$ |
First 32 of 1152 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(21\) | \(23\) | \(27\) | \(29\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{3040}(1,\cdot)\) | 3040.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{3040}(3,\cdot)\) | 3040.fw | 72 | yes | \(-1\) | \(1\) | \(e\left(\frac{19}{72}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{35}{72}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{43}{72}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{65}{72}\right)\) |
\(\chi_{3040}(7,\cdot)\) | 3040.cx | 12 | no | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(i\) | \(e\left(\frac{2}{3}\right)\) | \(-i\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(1\) | \(e\left(\frac{11}{12}\right)\) |
\(\chi_{3040}(9,\cdot)\) | 3040.ey | 36 | no | \(1\) | \(1\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{29}{36}\right)\) |
\(\chi_{3040}(11,\cdot)\) | 3040.eq | 24 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{24}\right)\) | \(-i\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{24}\right)\) |
\(\chi_{3040}(13,\cdot)\) | 3040.gl | 72 | yes | \(1\) | \(1\) | \(e\left(\frac{35}{72}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{55}{72}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{47}{72}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{61}{72}\right)\) |
\(\chi_{3040}(17,\cdot)\) | 3040.fo | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{4}{9}\right)\) |
\(\chi_{3040}(21,\cdot)\) | 3040.gg | 72 | no | \(-1\) | \(1\) | \(e\left(\frac{43}{72}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{47}{72}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{13}{72}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{59}{72}\right)\) |
\(\chi_{3040}(23,\cdot)\) | 3040.fi | 36 | no | \(1\) | \(1\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{23}{36}\right)\) |
\(\chi_{3040}(27,\cdot)\) | 3040.ex | 24 | yes | \(-1\) | \(1\) | \(e\left(\frac{19}{24}\right)\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{17}{24}\right)\) |
\(\chi_{3040}(29,\cdot)\) | 3040.ge | 72 | yes | \(-1\) | \(1\) | \(e\left(\frac{65}{72}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{61}{72}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{59}{72}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{13}{72}\right)\) |
\(\chi_{3040}(31,\cdot)\) | 3040.bq | 6 | no | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{3040}(33,\cdot)\) | 3040.fe | 36 | no | \(1\) | \(1\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{9}\right)\) |
\(\chi_{3040}(37,\cdot)\) | 3040.ce | 8 | yes | \(1\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(-1\) | \(i\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(-i\) | \(e\left(\frac{1}{8}\right)\) | \(-1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) |
\(\chi_{3040}(39,\cdot)\) | 3040.v | 4 | no | \(-1\) | \(1\) | \(-i\) | \(-1\) | \(-1\) | \(-i\) | \(i\) | \(-1\) | \(i\) | \(-1\) | \(i\) | \(-i\) |
\(\chi_{3040}(41,\cdot)\) | 3040.fu | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{19}{36}\right)\) |
\(\chi_{3040}(43,\cdot)\) | 3040.gk | 72 | yes | \(1\) | \(1\) | \(e\left(\frac{13}{72}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{5}{72}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{1}{72}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{35}{72}\right)\) |
\(\chi_{3040}(47,\cdot)\) | 3040.ff | 36 | no | \(1\) | \(1\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{9}\right)\) |
\(\chi_{3040}(49,\cdot)\) | 3040.bp | 6 | no | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{3040}(51,\cdot)\) | 3040.gd | 72 | no | \(1\) | \(1\) | \(e\left(\frac{53}{72}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{37}{72}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{47}{72}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{25}{72}\right)\) |
\(\chi_{3040}(53,\cdot)\) | 3040.fy | 72 | yes | \(1\) | \(1\) | \(e\left(\frac{5}{72}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{49}{72}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{53}{72}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{55}{72}\right)\) |
\(\chi_{3040}(59,\cdot)\) | 3040.gb | 72 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{72}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{47}{72}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{49}{72}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{23}{72}\right)\) |
\(\chi_{3040}(61,\cdot)\) | 3040.ga | 72 | no | \(1\) | \(1\) | \(e\left(\frac{41}{72}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{13}{72}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{71}{72}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{1}{72}\right)\) |
\(\chi_{3040}(63,\cdot)\) | 3040.fr | 36 | no | \(1\) | \(1\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{13}{18}\right)\) |
\(\chi_{3040}(67,\cdot)\) | 3040.gj | 72 | yes | \(-1\) | \(1\) | \(e\left(\frac{47}{72}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{7}{72}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{59}{72}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{49}{72}\right)\) |
\(\chi_{3040}(69,\cdot)\) | 3040.em | 24 | yes | \(-1\) | \(1\) | \(e\left(\frac{17}{24}\right)\) | \(-i\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{13}{24}\right)\) |
\(\chi_{3040}(71,\cdot)\) | 3040.ez | 36 | no | \(1\) | \(1\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{13}{36}\right)\) |
\(\chi_{3040}(73,\cdot)\) | 3040.fk | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{19}{36}\right)\) |
\(\chi_{3040}(77,\cdot)\) | 3040.ct | 8 | no | \(-1\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(1\) | \(-i\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(-i\) | \(e\left(\frac{3}{8}\right)\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) |
\(\chi_{3040}(79,\cdot)\) | 3040.dt | 18 | no | \(1\) | \(1\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{9}\right)\) |
\(\chi_{3040}(81,\cdot)\) | 3040.dy | 18 | no | \(1\) | \(1\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{18}\right)\) |
\(\chi_{3040}(83,\cdot)\) | 3040.ev | 24 | yes | \(1\) | \(1\) | \(e\left(\frac{17}{24}\right)\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{19}{24}\right)\) |