Properties

Label 3040.cn
Modulus $3040$
Conductor $3040$
Order $8$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3040, base_ring=CyclotomicField(8)) M = H._module chi = DirichletCharacter(H, M([0,3,4,4])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(189,3040)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(3040\)
Conductor: \(3040\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(8\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{8})\)
Fixed field: 8.0.174913885306880000.1

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(13\) \(17\) \(21\) \(23\) \(27\) \(29\)
\(\chi_{3040}(189,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{8}\right)\) \(i\) \(i\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(1\) \(e\left(\frac{3}{8}\right)\) \(-i\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{3040}(949,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{8}\right)\) \(-i\) \(-i\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(1\) \(e\left(\frac{5}{8}\right)\) \(i\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{3040}(1709,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{8}\right)\) \(i\) \(i\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(1\) \(e\left(\frac{7}{8}\right)\) \(-i\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{3040}(2469,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{8}\right)\) \(-i\) \(-i\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(1\) \(e\left(\frac{1}{8}\right)\) \(i\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{7}{8}\right)\)