Properties

Label 304.51
Modulus $304$
Conductor $304$
Order $36$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(304, base_ring=CyclotomicField(36))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([18,27,10]))
 
pari: [g,chi] = znchar(Mod(51,304))
 

Basic properties

Modulus: \(304\)
Conductor: \(304\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 304.bg

\(\chi_{304}(3,\cdot)\) \(\chi_{304}(51,\cdot)\) \(\chi_{304}(59,\cdot)\) \(\chi_{304}(67,\cdot)\) \(\chi_{304}(91,\cdot)\) \(\chi_{304}(147,\cdot)\) \(\chi_{304}(155,\cdot)\) \(\chi_{304}(203,\cdot)\) \(\chi_{304}(211,\cdot)\) \(\chi_{304}(219,\cdot)\) \(\chi_{304}(243,\cdot)\) \(\chi_{304}(299,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: 36.36.19036714782161565107424425435655777110146017378670996611401194085493506048.1

Values on generators

\((191,229,97)\) → \((-1,-i,e\left(\frac{5}{18}\right))\)

Values

\(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(21\)\(23\)
\(1\)\(1\)\(e\left(\frac{13}{36}\right)\)\(e\left(\frac{7}{36}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{23}{36}\right)\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{1}{36}\right)\)\(e\left(\frac{5}{9}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 304 }(51,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 304 }(51,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 304 }(51,·),\chi_{ 304 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 304 }(51,·)) \;\) at \(\; a,b = \) e.g. 1,2