sage: H = DirichletGroup(304)
pari: g = idealstar(,304,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 144 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{36}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{304}(191,\cdot)$, $\chi_{304}(229,\cdot)$, $\chi_{304}(97,\cdot)$ |
First 32 of 144 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{304}(1,\cdot)\) | 304.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{304}(3,\cdot)\) | 304.bg | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{4}{9}\right)\) |
\(\chi_{304}(5,\cdot)\) | 304.bi | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) |
\(\chi_{304}(7,\cdot)\) | 304.o | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{304}(9,\cdot)\) | 304.bb | 18 | no | \(1\) | \(1\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) |
\(\chi_{304}(11,\cdot)\) | 304.y | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(-i\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{304}(13,\cdot)\) | 304.bj | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{1}{18}\right)\) |
\(\chi_{304}(15,\cdot)\) | 304.be | 18 | no | \(1\) | \(1\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) |
\(\chi_{304}(17,\cdot)\) | 304.u | 9 | no | \(1\) | \(1\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) |
\(\chi_{304}(21,\cdot)\) | 304.bj | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{11}{18}\right)\) |
\(\chi_{304}(23,\cdot)\) | 304.bc | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) |
\(\chi_{304}(25,\cdot)\) | 304.bb | 18 | no | \(1\) | \(1\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) |
\(\chi_{304}(27,\cdot)\) | 304.x | 12 | yes | \(1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(-i\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{304}(29,\cdot)\) | 304.bj | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{7}{18}\right)\) |
\(\chi_{304}(31,\cdot)\) | 304.n | 6 | no | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{304}(33,\cdot)\) | 304.z | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) |
\(\chi_{304}(35,\cdot)\) | 304.bh | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{4}{9}\right)\) |
\(\chi_{304}(37,\cdot)\) | 304.j | 4 | yes | \(-1\) | \(1\) | \(i\) | \(i\) | \(-1\) | \(-1\) | \(i\) | \(i\) | \(-1\) | \(1\) | \(-i\) | \(-1\) |
\(\chi_{304}(39,\cdot)\) | 304.f | 2 | no | \(-1\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(-1\) | \(-1\) |
\(\chi_{304}(41,\cdot)\) | 304.ba | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) |
\(\chi_{304}(43,\cdot)\) | 304.bh | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{7}{9}\right)\) |
\(\chi_{304}(45,\cdot)\) | 304.v | 12 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(-i\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{304}(47,\cdot)\) | 304.bf | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) |
\(\chi_{304}(49,\cdot)\) | 304.i | 3 | no | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{304}(51,\cdot)\) | 304.bg | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{5}{9}\right)\) |
\(\chi_{304}(53,\cdot)\) | 304.bj | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{13}{18}\right)\) |
\(\chi_{304}(55,\cdot)\) | 304.bc | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{11}{18}\right)\) |
\(\chi_{304}(59,\cdot)\) | 304.bg | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{1}{9}\right)\) |
\(\chi_{304}(61,\cdot)\) | 304.bi | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{13}{18}\right)\) |
\(\chi_{304}(63,\cdot)\) | 304.bf | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) |
\(\chi_{304}(65,\cdot)\) | 304.r | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{304}(67,\cdot)\) | 304.bg | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{8}{9}\right)\) |