sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(296, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([0,0,1]))
pari:[g,chi] = znchar(Mod(113,296))
\(\chi_{296}(17,\cdot)\)
\(\chi_{296}(57,\cdot)\)
\(\chi_{296}(89,\cdot)\)
\(\chi_{296}(113,\cdot)\)
\(\chi_{296}(129,\cdot)\)
\(\chi_{296}(153,\cdot)\)
\(\chi_{296}(161,\cdot)\)
\(\chi_{296}(209,\cdot)\)
\(\chi_{296}(217,\cdot)\)
\(\chi_{296}(241,\cdot)\)
\(\chi_{296}(257,\cdot)\)
\(\chi_{296}(281,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((223,149,113)\) → \((1,1,e\left(\frac{1}{36}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
| \( \chi_{ 296 }(113, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{11}{18}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)