sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(290, base_ring=CyclotomicField(28))
M = H._module
chi = DirichletCharacter(H, M([7,9]))
pari:[g,chi] = znchar(Mod(77,290))
\(\chi_{290}(73,\cdot)\)
\(\chi_{290}(77,\cdot)\)
\(\chi_{290}(113,\cdot)\)
\(\chi_{290}(127,\cdot)\)
\(\chi_{290}(137,\cdot)\)
\(\chi_{290}(143,\cdot)\)
\(\chi_{290}(147,\cdot)\)
\(\chi_{290}(153,\cdot)\)
\(\chi_{290}(163,\cdot)\)
\(\chi_{290}(177,\cdot)\)
\(\chi_{290}(213,\cdot)\)
\(\chi_{290}(217,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((117,31)\) → \((i,e\left(\frac{9}{28}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
\( \chi_{ 290 }(77, a) \) |
\(1\) | \(1\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{3}{28}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{1}{28}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(1\) | \(e\left(\frac{11}{28}\right)\) | \(e\left(\frac{13}{28}\right)\) | \(e\left(\frac{5}{28}\right)\) | \(e\left(\frac{1}{14}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)