Properties

Label 290.t
Modulus $290$
Conductor $145$
Order $28$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(290, base_ring=CyclotomicField(28)) M = H._module chi = DirichletCharacter(H, M([21,27])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(73,290)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(290\)
Conductor: \(145\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(28\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 145.o
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{28})\)
Fixed field: 28.28.1455848000512373226044338588471370773272037506103515625.1

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(13\) \(17\) \(19\) \(21\) \(23\) \(27\)
\(\chi_{290}(73,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{17}{28}\right)\) \(1\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{3}{14}\right)\)
\(\chi_{290}(77,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{15}{28}\right)\) \(1\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{1}{14}\right)\)
\(\chi_{290}(113,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{13}{28}\right)\) \(1\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{13}{14}\right)\)
\(\chi_{290}(127,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{23}{28}\right)\) \(1\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{9}{14}\right)\)
\(\chi_{290}(137,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{19}{28}\right)\) \(1\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{5}{14}\right)\)
\(\chi_{290}(143,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{25}{28}\right)\) \(1\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{11}{14}\right)\)
\(\chi_{290}(147,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{11}{28}\right)\) \(1\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{11}{14}\right)\)
\(\chi_{290}(153,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{5}{28}\right)\) \(1\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{5}{14}\right)\)
\(\chi_{290}(163,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{9}{28}\right)\) \(1\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{9}{14}\right)\)
\(\chi_{290}(177,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{27}{28}\right)\) \(1\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{13}{14}\right)\)
\(\chi_{290}(213,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{1}{28}\right)\) \(1\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{1}{14}\right)\)
\(\chi_{290}(217,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{3}{28}\right)\) \(1\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{3}{14}\right)\)