Properties

Label 28665.wx
Modulus $28665$
Conductor $9555$
Order $28$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(28665, base_ring=CyclotomicField(28)) M = H._module chi = DirichletCharacter(H, M([14,21,16,14])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(3158,28665)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(28665\)
Conductor: \(9555\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(28\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 9555.is
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{28})\)
Fixed field: Number field defined by a degree 28 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(8\) \(11\) \(16\) \(17\) \(19\) \(22\) \(23\) \(29\)
\(\chi_{28665}(3158,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{15}{28}\right)\) \(1\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{2}{7}\right)\)
\(\chi_{28665}(3977,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{5}{28}\right)\) \(1\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{3}{7}\right)\)
\(\chi_{28665}(8072,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{25}{28}\right)\) \(1\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{1}{7}\right)\)
\(\chi_{28665}(11348,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{27}{28}\right)\) \(1\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{5}{7}\right)\)
\(\chi_{28665}(12167,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{17}{28}\right)\) \(1\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{6}{7}\right)\)
\(\chi_{28665}(15443,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{19}{28}\right)\) \(1\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{3}{7}\right)\)
\(\chi_{28665}(16262,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{9}{28}\right)\) \(1\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{4}{7}\right)\)
\(\chi_{28665}(19538,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{11}{28}\right)\) \(1\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{1}{7}\right)\)
\(\chi_{28665}(20357,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{1}{28}\right)\) \(1\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{2}{7}\right)\)
\(\chi_{28665}(23633,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{3}{28}\right)\) \(1\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{6}{7}\right)\)
\(\chi_{28665}(27728,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{23}{28}\right)\) \(1\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{4}{7}\right)\)
\(\chi_{28665}(28547,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{13}{28}\right)\) \(1\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{5}{7}\right)\)