Properties

Label 28665.19538
Modulus $28665$
Conductor $9555$
Order $28$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(28665, base_ring=CyclotomicField(28)) M = H._module chi = DirichletCharacter(H, M([14,21,8,14]))
 
Copy content pari:[g,chi] = znchar(Mod(19538,28665))
 

Basic properties

Modulus: \(28665\)
Conductor: \(9555\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(28\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{9555}(428,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 28665.wx

\(\chi_{28665}(3158,\cdot)\) \(\chi_{28665}(3977,\cdot)\) \(\chi_{28665}(8072,\cdot)\) \(\chi_{28665}(11348,\cdot)\) \(\chi_{28665}(12167,\cdot)\) \(\chi_{28665}(15443,\cdot)\) \(\chi_{28665}(16262,\cdot)\) \(\chi_{28665}(19538,\cdot)\) \(\chi_{28665}(20357,\cdot)\) \(\chi_{28665}(23633,\cdot)\) \(\chi_{28665}(27728,\cdot)\) \(\chi_{28665}(28547,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{28})\)
Fixed field: Number field defined by a degree 28 polynomial

Values on generators

\((25481,11467,18721,11026)\) → \((-1,-i,e\left(\frac{2}{7}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(16\)\(17\)\(19\)\(22\)\(23\)\(29\)
\( \chi_{ 28665 }(19538, a) \) \(1\)\(1\)\(e\left(\frac{5}{28}\right)\)\(e\left(\frac{5}{14}\right)\)\(e\left(\frac{15}{28}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{11}{28}\right)\)\(1\)\(e\left(\frac{17}{28}\right)\)\(e\left(\frac{17}{28}\right)\)\(e\left(\frac{1}{7}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 28665 }(19538,a) \;\) at \(\;a = \) e.g. 2