Properties

Label 2700.cs
Modulus $2700$
Conductor $2700$
Order $180$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2700, base_ring=CyclotomicField(180)) M = H._module chi = DirichletCharacter(H, M([90,80,117])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(67,2700)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2700\)
Conductor: \(2700\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(180\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{180})$
Fixed field: Number field defined by a degree 180 polynomial (not computed)

First 31 of 48 characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\)
\(\chi_{2700}(67,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{61}{90}\right)\) \(e\left(\frac{163}{180}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{97}{180}\right)\) \(e\left(\frac{67}{90}\right)\) \(e\left(\frac{53}{90}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{7}{45}\right)\)
\(\chi_{2700}(103,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{19}{90}\right)\) \(e\left(\frac{157}{180}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{163}{180}\right)\) \(e\left(\frac{43}{90}\right)\) \(e\left(\frac{77}{90}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{28}{45}\right)\)
\(\chi_{2700}(187,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{83}{90}\right)\) \(e\left(\frac{179}{180}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{101}{180}\right)\) \(e\left(\frac{41}{90}\right)\) \(e\left(\frac{19}{90}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{11}{45}\right)\)
\(\chi_{2700}(223,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{77}{90}\right)\) \(e\left(\frac{101}{180}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{59}{180}\right)\) \(e\left(\frac{89}{90}\right)\) \(e\left(\frac{61}{90}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{14}{45}\right)\)
\(\chi_{2700}(247,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{49}{90}\right)\) \(e\left(\frac{7}{180}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{13}{180}\right)\) \(e\left(\frac{73}{90}\right)\) \(e\left(\frac{47}{90}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{13}{45}\right)\)
\(\chi_{2700}(283,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{61}{90}\right)\) \(e\left(\frac{73}{180}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{7}{180}\right)\) \(e\left(\frac{67}{90}\right)\) \(e\left(\frac{53}{90}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{7}{45}\right)\)
\(\chi_{2700}(367,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{71}{90}\right)\) \(e\left(\frac{23}{180}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{17}{180}\right)\) \(e\left(\frac{47}{90}\right)\) \(e\left(\frac{13}{90}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{17}{45}\right)\)
\(\chi_{2700}(403,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{29}{90}\right)\) \(e\left(\frac{17}{180}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{83}{180}\right)\) \(e\left(\frac{23}{90}\right)\) \(e\left(\frac{37}{90}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{38}{45}\right)\)
\(\chi_{2700}(427,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{37}{90}\right)\) \(e\left(\frac{31}{180}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{109}{180}\right)\) \(e\left(\frac{79}{90}\right)\) \(e\left(\frac{41}{90}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{19}{45}\right)\)
\(\chi_{2700}(463,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{13}{90}\right)\) \(e\left(\frac{169}{180}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{31}{180}\right)\) \(e\left(\frac{1}{90}\right)\) \(e\left(\frac{29}{90}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{31}{45}\right)\)
\(\chi_{2700}(547,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{59}{90}\right)\) \(e\left(\frac{47}{180}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{113}{180}\right)\) \(e\left(\frac{53}{90}\right)\) \(e\left(\frac{7}{90}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{23}{45}\right)\)
\(\chi_{2700}(583,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{71}{90}\right)\) \(e\left(\frac{113}{180}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{107}{180}\right)\) \(e\left(\frac{47}{90}\right)\) \(e\left(\frac{13}{90}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{17}{45}\right)\)
\(\chi_{2700}(727,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{47}{90}\right)\) \(e\left(\frac{71}{180}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{29}{180}\right)\) \(e\left(\frac{59}{90}\right)\) \(e\left(\frac{1}{90}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{29}{45}\right)\)
\(\chi_{2700}(763,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{23}{90}\right)\) \(e\left(\frac{29}{180}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{131}{180}\right)\) \(e\left(\frac{71}{90}\right)\) \(e\left(\frac{79}{90}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{41}{45}\right)\)
\(\chi_{2700}(787,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{13}{90}\right)\) \(e\left(\frac{79}{180}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{121}{180}\right)\) \(e\left(\frac{1}{90}\right)\) \(e\left(\frac{29}{90}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{31}{45}\right)\)
\(\chi_{2700}(823,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{7}{90}\right)\) \(e\left(\frac{1}{180}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{79}{180}\right)\) \(e\left(\frac{49}{90}\right)\) \(e\left(\frac{71}{90}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{34}{45}\right)\)
\(\chi_{2700}(967,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{1}{90}\right)\) \(e\left(\frac{103}{180}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{37}{180}\right)\) \(e\left(\frac{7}{90}\right)\) \(e\left(\frac{23}{90}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{37}{45}\right)\)
\(\chi_{2700}(1003,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{49}{90}\right)\) \(e\left(\frac{97}{180}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{103}{180}\right)\) \(e\left(\frac{73}{90}\right)\) \(e\left(\frac{47}{90}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{13}{45}\right)\)
\(\chi_{2700}(1087,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{23}{90}\right)\) \(e\left(\frac{119}{180}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{41}{180}\right)\) \(e\left(\frac{71}{90}\right)\) \(e\left(\frac{79}{90}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{41}{45}\right)\)
\(\chi_{2700}(1123,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{17}{90}\right)\) \(e\left(\frac{41}{180}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{179}{180}\right)\) \(e\left(\frac{29}{90}\right)\) \(e\left(\frac{31}{90}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{44}{45}\right)\)
\(\chi_{2700}(1147,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{79}{90}\right)\) \(e\left(\frac{127}{180}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{133}{180}\right)\) \(e\left(\frac{13}{90}\right)\) \(e\left(\frac{17}{90}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{43}{45}\right)\)
\(\chi_{2700}(1183,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{1}{90}\right)\) \(e\left(\frac{13}{180}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{127}{180}\right)\) \(e\left(\frac{7}{90}\right)\) \(e\left(\frac{23}{90}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{37}{45}\right)\)
\(\chi_{2700}(1267,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{11}{90}\right)\) \(e\left(\frac{143}{180}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{137}{180}\right)\) \(e\left(\frac{77}{90}\right)\) \(e\left(\frac{73}{90}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{2}{45}\right)\)
\(\chi_{2700}(1303,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{59}{90}\right)\) \(e\left(\frac{137}{180}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{23}{180}\right)\) \(e\left(\frac{53}{90}\right)\) \(e\left(\frac{7}{90}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{23}{45}\right)\)
\(\chi_{2700}(1327,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{67}{90}\right)\) \(e\left(\frac{151}{180}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{49}{180}\right)\) \(e\left(\frac{19}{90}\right)\) \(e\left(\frac{11}{90}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{4}{45}\right)\)
\(\chi_{2700}(1363,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{43}{90}\right)\) \(e\left(\frac{109}{180}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{151}{180}\right)\) \(e\left(\frac{31}{90}\right)\) \(e\left(\frac{89}{90}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{16}{45}\right)\)
\(\chi_{2700}(1447,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{89}{90}\right)\) \(e\left(\frac{167}{180}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{53}{180}\right)\) \(e\left(\frac{83}{90}\right)\) \(e\left(\frac{67}{90}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{8}{45}\right)\)
\(\chi_{2700}(1483,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{11}{90}\right)\) \(e\left(\frac{53}{180}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{47}{180}\right)\) \(e\left(\frac{77}{90}\right)\) \(e\left(\frac{73}{90}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{2}{45}\right)\)
\(\chi_{2700}(1627,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{77}{90}\right)\) \(e\left(\frac{11}{180}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{149}{180}\right)\) \(e\left(\frac{89}{90}\right)\) \(e\left(\frac{61}{90}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{14}{45}\right)\)
\(\chi_{2700}(1663,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{53}{90}\right)\) \(e\left(\frac{149}{180}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{71}{180}\right)\) \(e\left(\frac{11}{90}\right)\) \(e\left(\frac{49}{90}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{26}{45}\right)\)
\(\chi_{2700}(1687,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{43}{90}\right)\) \(e\left(\frac{19}{180}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{61}{180}\right)\) \(e\left(\frac{31}{90}\right)\) \(e\left(\frac{89}{90}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{16}{45}\right)\)