sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2700, base_ring=CyclotomicField(180))
M = H._module
chi = DirichletCharacter(H, M([90,160,171]))
pari:[g,chi] = znchar(Mod(763,2700))
Modulus: | \(2700\) | |
Conductor: | \(2700\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(180\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2700}(67,\cdot)\)
\(\chi_{2700}(103,\cdot)\)
\(\chi_{2700}(187,\cdot)\)
\(\chi_{2700}(223,\cdot)\)
\(\chi_{2700}(247,\cdot)\)
\(\chi_{2700}(283,\cdot)\)
\(\chi_{2700}(367,\cdot)\)
\(\chi_{2700}(403,\cdot)\)
\(\chi_{2700}(427,\cdot)\)
\(\chi_{2700}(463,\cdot)\)
\(\chi_{2700}(547,\cdot)\)
\(\chi_{2700}(583,\cdot)\)
\(\chi_{2700}(727,\cdot)\)
\(\chi_{2700}(763,\cdot)\)
\(\chi_{2700}(787,\cdot)\)
\(\chi_{2700}(823,\cdot)\)
\(\chi_{2700}(967,\cdot)\)
\(\chi_{2700}(1003,\cdot)\)
\(\chi_{2700}(1087,\cdot)\)
\(\chi_{2700}(1123,\cdot)\)
\(\chi_{2700}(1147,\cdot)\)
\(\chi_{2700}(1183,\cdot)\)
\(\chi_{2700}(1267,\cdot)\)
\(\chi_{2700}(1303,\cdot)\)
\(\chi_{2700}(1327,\cdot)\)
\(\chi_{2700}(1363,\cdot)\)
\(\chi_{2700}(1447,\cdot)\)
\(\chi_{2700}(1483,\cdot)\)
\(\chi_{2700}(1627,\cdot)\)
\(\chi_{2700}(1663,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1351,1001,2377)\) → \((-1,e\left(\frac{8}{9}\right),e\left(\frac{19}{20}\right))\)
\(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 2700 }(763, a) \) |
\(1\) | \(1\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{23}{90}\right)\) | \(e\left(\frac{29}{180}\right)\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{131}{180}\right)\) | \(e\left(\frac{71}{90}\right)\) | \(e\left(\frac{79}{90}\right)\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{41}{45}\right)\) |
sage:chi.jacobi_sum(n)