Properties

Label 2700.283
Modulus $2700$
Conductor $2700$
Order $180$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2700, base_ring=CyclotomicField(180)) M = H._module chi = DirichletCharacter(H, M([90,80,27]))
 
Copy content pari:[g,chi] = znchar(Mod(283,2700))
 

Basic properties

Modulus: \(2700\)
Conductor: \(2700\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(180\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2700.cs

\(\chi_{2700}(67,\cdot)\) \(\chi_{2700}(103,\cdot)\) \(\chi_{2700}(187,\cdot)\) \(\chi_{2700}(223,\cdot)\) \(\chi_{2700}(247,\cdot)\) \(\chi_{2700}(283,\cdot)\) \(\chi_{2700}(367,\cdot)\) \(\chi_{2700}(403,\cdot)\) \(\chi_{2700}(427,\cdot)\) \(\chi_{2700}(463,\cdot)\) \(\chi_{2700}(547,\cdot)\) \(\chi_{2700}(583,\cdot)\) \(\chi_{2700}(727,\cdot)\) \(\chi_{2700}(763,\cdot)\) \(\chi_{2700}(787,\cdot)\) \(\chi_{2700}(823,\cdot)\) \(\chi_{2700}(967,\cdot)\) \(\chi_{2700}(1003,\cdot)\) \(\chi_{2700}(1087,\cdot)\) \(\chi_{2700}(1123,\cdot)\) \(\chi_{2700}(1147,\cdot)\) \(\chi_{2700}(1183,\cdot)\) \(\chi_{2700}(1267,\cdot)\) \(\chi_{2700}(1303,\cdot)\) \(\chi_{2700}(1327,\cdot)\) \(\chi_{2700}(1363,\cdot)\) \(\chi_{2700}(1447,\cdot)\) \(\chi_{2700}(1483,\cdot)\) \(\chi_{2700}(1627,\cdot)\) \(\chi_{2700}(1663,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{180})$
Fixed field: Number field defined by a degree 180 polynomial (not computed)

Values on generators

\((1351,1001,2377)\) → \((-1,e\left(\frac{4}{9}\right),e\left(\frac{3}{20}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 2700 }(283, a) \) \(1\)\(1\)\(e\left(\frac{13}{36}\right)\)\(e\left(\frac{61}{90}\right)\)\(e\left(\frac{73}{180}\right)\)\(e\left(\frac{37}{60}\right)\)\(e\left(\frac{8}{15}\right)\)\(e\left(\frac{7}{180}\right)\)\(e\left(\frac{67}{90}\right)\)\(e\left(\frac{53}{90}\right)\)\(e\left(\frac{1}{60}\right)\)\(e\left(\frac{7}{45}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2700 }(283,a) \;\) at \(\;a = \) e.g. 2