sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2700, base_ring=CyclotomicField(180))
M = H._module
chi = DirichletCharacter(H, M([90,50,99]))
pari:[g,chi] = znchar(Mod(923,2700))
| Modulus: | \(2700\) | |
| Conductor: | \(2700\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(180\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2700}(23,\cdot)\)
\(\chi_{2700}(47,\cdot)\)
\(\chi_{2700}(83,\cdot)\)
\(\chi_{2700}(167,\cdot)\)
\(\chi_{2700}(203,\cdot)\)
\(\chi_{2700}(227,\cdot)\)
\(\chi_{2700}(263,\cdot)\)
\(\chi_{2700}(347,\cdot)\)
\(\chi_{2700}(383,\cdot)\)
\(\chi_{2700}(527,\cdot)\)
\(\chi_{2700}(563,\cdot)\)
\(\chi_{2700}(587,\cdot)\)
\(\chi_{2700}(623,\cdot)\)
\(\chi_{2700}(767,\cdot)\)
\(\chi_{2700}(803,\cdot)\)
\(\chi_{2700}(887,\cdot)\)
\(\chi_{2700}(923,\cdot)\)
\(\chi_{2700}(947,\cdot)\)
\(\chi_{2700}(983,\cdot)\)
\(\chi_{2700}(1067,\cdot)\)
\(\chi_{2700}(1103,\cdot)\)
\(\chi_{2700}(1127,\cdot)\)
\(\chi_{2700}(1163,\cdot)\)
\(\chi_{2700}(1247,\cdot)\)
\(\chi_{2700}(1283,\cdot)\)
\(\chi_{2700}(1427,\cdot)\)
\(\chi_{2700}(1463,\cdot)\)
\(\chi_{2700}(1487,\cdot)\)
\(\chi_{2700}(1523,\cdot)\)
\(\chi_{2700}(1667,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1351,1001,2377)\) → \((-1,e\left(\frac{5}{18}\right),e\left(\frac{11}{20}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
| \( \chi_{ 2700 }(923, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{41}{45}\right)\) | \(e\left(\frac{121}{180}\right)\) | \(e\left(\frac{19}{60}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{109}{180}\right)\) | \(e\left(\frac{17}{45}\right)\) | \(e\left(\frac{41}{90}\right)\) | \(e\left(\frac{37}{60}\right)\) | \(e\left(\frac{83}{90}\right)\) |
sage:chi.jacobi_sum(n)