![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2700, base_ring=CyclotomicField(180))
M = H._module
chi = DirichletCharacter(H, M([90,50,171]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2700, base_ring=CyclotomicField(180))
M = H._module
chi = DirichletCharacter(H, M([90,50,171]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(1463,2700))
        pari:[g,chi] = znchar(Mod(1463,2700))
         
     
    
  
   | Modulus: | \(2700\) |  | 
   | Conductor: | \(2700\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(180\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | odd | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{2700}(23,\cdot)\)
  \(\chi_{2700}(47,\cdot)\)
  \(\chi_{2700}(83,\cdot)\)
  \(\chi_{2700}(167,\cdot)\)
  \(\chi_{2700}(203,\cdot)\)
  \(\chi_{2700}(227,\cdot)\)
  \(\chi_{2700}(263,\cdot)\)
  \(\chi_{2700}(347,\cdot)\)
  \(\chi_{2700}(383,\cdot)\)
  \(\chi_{2700}(527,\cdot)\)
  \(\chi_{2700}(563,\cdot)\)
  \(\chi_{2700}(587,\cdot)\)
  \(\chi_{2700}(623,\cdot)\)
  \(\chi_{2700}(767,\cdot)\)
  \(\chi_{2700}(803,\cdot)\)
  \(\chi_{2700}(887,\cdot)\)
  \(\chi_{2700}(923,\cdot)\)
  \(\chi_{2700}(947,\cdot)\)
  \(\chi_{2700}(983,\cdot)\)
  \(\chi_{2700}(1067,\cdot)\)
  \(\chi_{2700}(1103,\cdot)\)
  \(\chi_{2700}(1127,\cdot)\)
  \(\chi_{2700}(1163,\cdot)\)
  \(\chi_{2700}(1247,\cdot)\)
  \(\chi_{2700}(1283,\cdot)\)
  \(\chi_{2700}(1427,\cdot)\)
  \(\chi_{2700}(1463,\cdot)\)
  \(\chi_{2700}(1487,\cdot)\)
  \(\chi_{2700}(1523,\cdot)\)
  \(\chi_{2700}(1667,\cdot)\)
 ... 
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((1351,1001,2377)\) → \((-1,e\left(\frac{5}{18}\right),e\left(\frac{19}{20}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | 
    
    
      | \( \chi_{ 2700 }(1463, a) \) | \(-1\) | \(1\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{14}{45}\right)\) | \(e\left(\frac{49}{180}\right)\) | \(e\left(\frac{31}{60}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{1}{180}\right)\) | \(e\left(\frac{8}{45}\right)\) | \(e\left(\frac{59}{90}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{47}{90}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)