Properties

Label 2700.47
Modulus $2700$
Conductor $2700$
Order $180$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2700, base_ring=CyclotomicField(180)) M = H._module chi = DirichletCharacter(H, M([90,70,153]))
 
Copy content pari:[g,chi] = znchar(Mod(47,2700))
 

Basic properties

Modulus: \(2700\)
Conductor: \(2700\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(180\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2700.ct

\(\chi_{2700}(23,\cdot)\) \(\chi_{2700}(47,\cdot)\) \(\chi_{2700}(83,\cdot)\) \(\chi_{2700}(167,\cdot)\) \(\chi_{2700}(203,\cdot)\) \(\chi_{2700}(227,\cdot)\) \(\chi_{2700}(263,\cdot)\) \(\chi_{2700}(347,\cdot)\) \(\chi_{2700}(383,\cdot)\) \(\chi_{2700}(527,\cdot)\) \(\chi_{2700}(563,\cdot)\) \(\chi_{2700}(587,\cdot)\) \(\chi_{2700}(623,\cdot)\) \(\chi_{2700}(767,\cdot)\) \(\chi_{2700}(803,\cdot)\) \(\chi_{2700}(887,\cdot)\) \(\chi_{2700}(923,\cdot)\) \(\chi_{2700}(947,\cdot)\) \(\chi_{2700}(983,\cdot)\) \(\chi_{2700}(1067,\cdot)\) \(\chi_{2700}(1103,\cdot)\) \(\chi_{2700}(1127,\cdot)\) \(\chi_{2700}(1163,\cdot)\) \(\chi_{2700}(1247,\cdot)\) \(\chi_{2700}(1283,\cdot)\) \(\chi_{2700}(1427,\cdot)\) \(\chi_{2700}(1463,\cdot)\) \(\chi_{2700}(1487,\cdot)\) \(\chi_{2700}(1523,\cdot)\) \(\chi_{2700}(1667,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{180})$
Fixed field: Number field defined by a degree 180 polynomial (not computed)

Values on generators

\((1351,1001,2377)\) → \((-1,e\left(\frac{7}{18}\right),e\left(\frac{17}{20}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 2700 }(47, a) \) \(-1\)\(1\)\(e\left(\frac{35}{36}\right)\)\(e\left(\frac{7}{45}\right)\)\(e\left(\frac{47}{180}\right)\)\(e\left(\frac{53}{60}\right)\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{23}{180}\right)\)\(e\left(\frac{4}{45}\right)\)\(e\left(\frac{7}{90}\right)\)\(e\left(\frac{59}{60}\right)\)\(e\left(\frac{1}{90}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2700 }(47,a) \;\) at \(\;a = \) e.g. 2