Properties

Label 2695.1814
Modulus $2695$
Conductor $55$
Order $2$
Real yes
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2695, base_ring=CyclotomicField(2)) M = H._module chi = DirichletCharacter(H, M([1,0,1]))
 
Copy content pari:[g,chi] = znchar(Mod(1814,2695))
 

Basic properties

Modulus: \(2695\)
Conductor: \(55\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(2\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: yes
Primitive: no, induced from \(\chi_{55}(54,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2695.g

\(\chi_{2695}(1814,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q\)
Fixed field: \(\Q(\sqrt{-55}) \)

Values on generators

\((2157,1816,981)\) → \((-1,1,-1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(8\)\(9\)\(12\)\(13\)\(16\)\(17\)
\( \chi_{ 2695 }(1814, a) \) \(-1\)\(1\)\(1\)\(-1\)\(1\)\(-1\)\(1\)\(1\)\(-1\)\(1\)\(1\)\(1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2695 }(1814,a) \;\) at \(\;a = \) e.g. 2