sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(55, base_ring=CyclotomicField(2))
M = H._module
chi = DirichletCharacter(H, M([1,1]))
pari:[g,chi] = znchar(Mod(54,55))
sage:kronecker_character(-55)
pari:znchartokronecker(g,chi)
\(\displaystyle\left(\frac{-55}{\bullet}\right)\)
Modulus: | \(55\) | |
Conductor: | \(55\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(2\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | yes |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{55}(54,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((12,46)\) → \((-1,-1)\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(12\) | \(13\) | \(14\) |
\( \chi_{ 55 }(54, a) \) |
\(-1\) | \(1\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(1\) | \(1\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)