Properties

Label 2523.v
Modulus $2523$
Conductor $2523$
Order $406$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2523, base_ring=CyclotomicField(406)) M = H._module chi = DirichletCharacter(H, M([203,151])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(5,2523)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2523\)
Conductor: \(2523\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(406\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{203})$
Fixed field: Number field defined by a degree 406 polynomial (not computed)

First 31 of 168 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(13\) \(14\) \(16\)
\(\chi_{2523}(5,\cdot)\) \(-1\) \(1\) \(e\left(\frac{177}{203}\right)\) \(e\left(\frac{151}{203}\right)\) \(e\left(\frac{333}{406}\right)\) \(e\left(\frac{171}{203}\right)\) \(e\left(\frac{125}{203}\right)\) \(e\left(\frac{281}{406}\right)\) \(e\left(\frac{127}{203}\right)\) \(e\left(\frac{43}{203}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{99}{203}\right)\)
\(\chi_{2523}(35,\cdot)\) \(-1\) \(1\) \(e\left(\frac{68}{203}\right)\) \(e\left(\frac{136}{203}\right)\) \(e\left(\frac{269}{406}\right)\) \(e\left(\frac{193}{203}\right)\) \(e\left(\frac{1}{203}\right)\) \(e\left(\frac{405}{406}\right)\) \(e\left(\frac{27}{203}\right)\) \(e\left(\frac{153}{203}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{69}{203}\right)\)
\(\chi_{2523}(38,\cdot)\) \(-1\) \(1\) \(e\left(\frac{55}{203}\right)\) \(e\left(\frac{110}{203}\right)\) \(e\left(\frac{131}{406}\right)\) \(e\left(\frac{177}{203}\right)\) \(e\left(\frac{165}{203}\right)\) \(e\left(\frac{241}{406}\right)\) \(e\left(\frac{192}{203}\right)\) \(e\left(\frac{73}{203}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{17}{203}\right)\)
\(\chi_{2523}(62,\cdot)\) \(-1\) \(1\) \(e\left(\frac{4}{203}\right)\) \(e\left(\frac{8}{203}\right)\) \(e\left(\frac{183}{406}\right)\) \(e\left(\frac{83}{203}\right)\) \(e\left(\frac{12}{203}\right)\) \(e\left(\frac{191}{406}\right)\) \(e\left(\frac{121}{203}\right)\) \(e\left(\frac{9}{203}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{16}{203}\right)\)
\(\chi_{2523}(71,\cdot)\) \(-1\) \(1\) \(e\left(\frac{190}{203}\right)\) \(e\left(\frac{177}{203}\right)\) \(e\left(\frac{65}{406}\right)\) \(e\left(\frac{187}{203}\right)\) \(e\left(\frac{164}{203}\right)\) \(e\left(\frac{39}{406}\right)\) \(e\left(\frac{165}{203}\right)\) \(e\left(\frac{123}{203}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{151}{203}\right)\)
\(\chi_{2523}(80,\cdot)\) \(-1\) \(1\) \(e\left(\frac{178}{203}\right)\) \(e\left(\frac{153}{203}\right)\) \(e\left(\frac{125}{406}\right)\) \(e\left(\frac{141}{203}\right)\) \(e\left(\frac{128}{203}\right)\) \(e\left(\frac{75}{406}\right)\) \(e\left(\frac{5}{203}\right)\) \(e\left(\frac{96}{203}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{103}{203}\right)\)
\(\chi_{2523}(92,\cdot)\) \(-1\) \(1\) \(e\left(\frac{100}{203}\right)\) \(e\left(\frac{200}{203}\right)\) \(e\left(\frac{109}{406}\right)\) \(e\left(\frac{45}{203}\right)\) \(e\left(\frac{97}{203}\right)\) \(e\left(\frac{309}{406}\right)\) \(e\left(\frac{183}{203}\right)\) \(e\left(\frac{22}{203}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{197}{203}\right)\)
\(\chi_{2523}(122,\cdot)\) \(-1\) \(1\) \(e\left(\frac{173}{203}\right)\) \(e\left(\frac{143}{203}\right)\) \(e\left(\frac{353}{406}\right)\) \(e\left(\frac{88}{203}\right)\) \(e\left(\frac{113}{203}\right)\) \(e\left(\frac{293}{406}\right)\) \(e\left(\frac{6}{203}\right)\) \(e\left(\frac{34}{203}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{83}{203}\right)\)
\(\chi_{2523}(125,\cdot)\) \(-1\) \(1\) \(e\left(\frac{125}{203}\right)\) \(e\left(\frac{47}{203}\right)\) \(e\left(\frac{187}{406}\right)\) \(e\left(\frac{107}{203}\right)\) \(e\left(\frac{172}{203}\right)\) \(e\left(\frac{31}{406}\right)\) \(e\left(\frac{178}{203}\right)\) \(e\left(\frac{129}{203}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{94}{203}\right)\)
\(\chi_{2523}(149,\cdot)\) \(-1\) \(1\) \(e\left(\frac{60}{203}\right)\) \(e\left(\frac{120}{203}\right)\) \(e\left(\frac{309}{406}\right)\) \(e\left(\frac{27}{203}\right)\) \(e\left(\frac{180}{203}\right)\) \(e\left(\frac{23}{406}\right)\) \(e\left(\frac{191}{203}\right)\) \(e\left(\frac{135}{203}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{37}{203}\right)\)
\(\chi_{2523}(158,\cdot)\) \(-1\) \(1\) \(e\left(\frac{176}{203}\right)\) \(e\left(\frac{149}{203}\right)\) \(e\left(\frac{135}{406}\right)\) \(e\left(\frac{201}{203}\right)\) \(e\left(\frac{122}{203}\right)\) \(e\left(\frac{81}{406}\right)\) \(e\left(\frac{46}{203}\right)\) \(e\left(\frac{193}{203}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{95}{203}\right)\)
\(\chi_{2523}(167,\cdot)\) \(-1\) \(1\) \(e\left(\frac{59}{203}\right)\) \(e\left(\frac{118}{203}\right)\) \(e\left(\frac{111}{406}\right)\) \(e\left(\frac{57}{203}\right)\) \(e\left(\frac{177}{203}\right)\) \(e\left(\frac{229}{406}\right)\) \(e\left(\frac{110}{203}\right)\) \(e\left(\frac{82}{203}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{33}{203}\right)\)
\(\chi_{2523}(179,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{203}\right)\) \(e\left(\frac{46}{203}\right)\) \(e\left(\frac{291}{406}\right)\) \(e\left(\frac{122}{203}\right)\) \(e\left(\frac{69}{203}\right)\) \(e\left(\frac{337}{406}\right)\) \(e\left(\frac{36}{203}\right)\) \(e\left(\frac{1}{203}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{92}{203}\right)\)
\(\chi_{2523}(209,\cdot)\) \(-1\) \(1\) \(e\left(\frac{75}{203}\right)\) \(e\left(\frac{150}{203}\right)\) \(e\left(\frac{31}{406}\right)\) \(e\left(\frac{186}{203}\right)\) \(e\left(\frac{22}{203}\right)\) \(e\left(\frac{181}{406}\right)\) \(e\left(\frac{188}{203}\right)\) \(e\left(\frac{118}{203}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{97}{203}\right)\)
\(\chi_{2523}(212,\cdot)\) \(-1\) \(1\) \(e\left(\frac{195}{203}\right)\) \(e\left(\frac{187}{203}\right)\) \(e\left(\frac{243}{406}\right)\) \(e\left(\frac{37}{203}\right)\) \(e\left(\frac{179}{203}\right)\) \(e\left(\frac{227}{406}\right)\) \(e\left(\frac{164}{203}\right)\) \(e\left(\frac{185}{203}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{171}{203}\right)\)
\(\chi_{2523}(245,\cdot)\) \(-1\) \(1\) \(e\left(\frac{162}{203}\right)\) \(e\left(\frac{121}{203}\right)\) \(e\left(\frac{205}{406}\right)\) \(e\left(\frac{12}{203}\right)\) \(e\left(\frac{80}{203}\right)\) \(e\left(\frac{123}{406}\right)\) \(e\left(\frac{130}{203}\right)\) \(e\left(\frac{60}{203}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{39}{203}\right)\)
\(\chi_{2523}(254,\cdot)\) \(-1\) \(1\) \(e\left(\frac{143}{203}\right)\) \(e\left(\frac{83}{203}\right)\) \(e\left(\frac{97}{406}\right)\) \(e\left(\frac{176}{203}\right)\) \(e\left(\frac{23}{203}\right)\) \(e\left(\frac{383}{406}\right)\) \(e\left(\frac{12}{203}\right)\) \(e\left(\frac{68}{203}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{166}{203}\right)\)
\(\chi_{2523}(266,\cdot)\) \(-1\) \(1\) \(e\left(\frac{149}{203}\right)\) \(e\left(\frac{95}{203}\right)\) \(e\left(\frac{67}{406}\right)\) \(e\left(\frac{199}{203}\right)\) \(e\left(\frac{41}{203}\right)\) \(e\left(\frac{365}{406}\right)\) \(e\left(\frac{92}{203}\right)\) \(e\left(\frac{183}{203}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{190}{203}\right)\)
\(\chi_{2523}(296,\cdot)\) \(-1\) \(1\) \(e\left(\frac{180}{203}\right)\) \(e\left(\frac{157}{203}\right)\) \(e\left(\frac{115}{406}\right)\) \(e\left(\frac{81}{203}\right)\) \(e\left(\frac{134}{203}\right)\) \(e\left(\frac{69}{406}\right)\) \(e\left(\frac{167}{203}\right)\) \(e\left(\frac{202}{203}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{111}{203}\right)\)
\(\chi_{2523}(299,\cdot)\) \(-1\) \(1\) \(e\left(\frac{62}{203}\right)\) \(e\left(\frac{124}{203}\right)\) \(e\left(\frac{299}{406}\right)\) \(e\left(\frac{170}{203}\right)\) \(e\left(\frac{186}{203}\right)\) \(e\left(\frac{17}{406}\right)\) \(e\left(\frac{150}{203}\right)\) \(e\left(\frac{38}{203}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{45}{203}\right)\)
\(\chi_{2523}(323,\cdot)\) \(-1\) \(1\) \(e\left(\frac{172}{203}\right)\) \(e\left(\frac{141}{203}\right)\) \(e\left(\frac{155}{406}\right)\) \(e\left(\frac{118}{203}\right)\) \(e\left(\frac{110}{203}\right)\) \(e\left(\frac{93}{406}\right)\) \(e\left(\frac{128}{203}\right)\) \(e\left(\frac{184}{203}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{79}{203}\right)\)
\(\chi_{2523}(332,\cdot)\) \(-1\) \(1\) \(e\left(\frac{148}{203}\right)\) \(e\left(\frac{93}{203}\right)\) \(e\left(\frac{275}{406}\right)\) \(e\left(\frac{26}{203}\right)\) \(e\left(\frac{38}{203}\right)\) \(e\left(\frac{165}{406}\right)\) \(e\left(\frac{11}{203}\right)\) \(e\left(\frac{130}{203}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{186}{203}\right)\)
\(\chi_{2523}(341,\cdot)\) \(-1\) \(1\) \(e\left(\frac{24}{203}\right)\) \(e\left(\frac{48}{203}\right)\) \(e\left(\frac{83}{406}\right)\) \(e\left(\frac{92}{203}\right)\) \(e\left(\frac{72}{203}\right)\) \(e\left(\frac{131}{406}\right)\) \(e\left(\frac{117}{203}\right)\) \(e\left(\frac{54}{203}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{96}{203}\right)\)
\(\chi_{2523}(353,\cdot)\) \(-1\) \(1\) \(e\left(\frac{72}{203}\right)\) \(e\left(\frac{144}{203}\right)\) \(e\left(\frac{249}{406}\right)\) \(e\left(\frac{73}{203}\right)\) \(e\left(\frac{13}{203}\right)\) \(e\left(\frac{393}{406}\right)\) \(e\left(\frac{148}{203}\right)\) \(e\left(\frac{162}{203}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{85}{203}\right)\)
\(\chi_{2523}(383,\cdot)\) \(-1\) \(1\) \(e\left(\frac{82}{203}\right)\) \(e\left(\frac{164}{203}\right)\) \(e\left(\frac{199}{406}\right)\) \(e\left(\frac{179}{203}\right)\) \(e\left(\frac{43}{203}\right)\) \(e\left(\frac{363}{406}\right)\) \(e\left(\frac{146}{203}\right)\) \(e\left(\frac{83}{203}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{125}{203}\right)\)
\(\chi_{2523}(386,\cdot)\) \(-1\) \(1\) \(e\left(\frac{132}{203}\right)\) \(e\left(\frac{61}{203}\right)\) \(e\left(\frac{355}{406}\right)\) \(e\left(\frac{100}{203}\right)\) \(e\left(\frac{193}{203}\right)\) \(e\left(\frac{213}{406}\right)\) \(e\left(\frac{136}{203}\right)\) \(e\left(\frac{94}{203}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{122}{203}\right)\)
\(\chi_{2523}(410,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{203}\right)\) \(e\left(\frac{50}{203}\right)\) \(e\left(\frac{281}{406}\right)\) \(e\left(\frac{62}{203}\right)\) \(e\left(\frac{75}{203}\right)\) \(e\left(\frac{331}{406}\right)\) \(e\left(\frac{198}{203}\right)\) \(e\left(\frac{107}{203}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{100}{203}\right)\)
\(\chi_{2523}(419,\cdot)\) \(-1\) \(1\) \(e\left(\frac{134}{203}\right)\) \(e\left(\frac{65}{203}\right)\) \(e\left(\frac{345}{406}\right)\) \(e\left(\frac{40}{203}\right)\) \(e\left(\frac{199}{203}\right)\) \(e\left(\frac{207}{406}\right)\) \(e\left(\frac{95}{203}\right)\) \(e\left(\frac{200}{203}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{130}{203}\right)\)
\(\chi_{2523}(428,\cdot)\) \(-1\) \(1\) \(e\left(\frac{108}{203}\right)\) \(e\left(\frac{13}{203}\right)\) \(e\left(\frac{69}{406}\right)\) \(e\left(\frac{8}{203}\right)\) \(e\left(\frac{121}{203}\right)\) \(e\left(\frac{285}{406}\right)\) \(e\left(\frac{19}{203}\right)\) \(e\left(\frac{40}{203}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{26}{203}\right)\)
\(\chi_{2523}(440,\cdot)\) \(-1\) \(1\) \(e\left(\frac{198}{203}\right)\) \(e\left(\frac{193}{203}\right)\) \(e\left(\frac{25}{406}\right)\) \(e\left(\frac{150}{203}\right)\) \(e\left(\frac{188}{203}\right)\) \(e\left(\frac{15}{406}\right)\) \(e\left(\frac{1}{203}\right)\) \(e\left(\frac{141}{203}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{183}{203}\right)\)
\(\chi_{2523}(470,\cdot)\) \(-1\) \(1\) \(e\left(\frac{187}{203}\right)\) \(e\left(\frac{171}{203}\right)\) \(e\left(\frac{283}{406}\right)\) \(e\left(\frac{74}{203}\right)\) \(e\left(\frac{155}{203}\right)\) \(e\left(\frac{251}{406}\right)\) \(e\left(\frac{125}{203}\right)\) \(e\left(\frac{167}{203}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{139}{203}\right)\)