Properties

Label 2523.158
Modulus $2523$
Conductor $2523$
Order $406$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2523, base_ring=CyclotomicField(406)) M = H._module chi = DirichletCharacter(H, M([203,149]))
 
Copy content pari:[g,chi] = znchar(Mod(158,2523))
 

Basic properties

Modulus: \(2523\)
Conductor: \(2523\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(406\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2523.v

\(\chi_{2523}(5,\cdot)\) \(\chi_{2523}(35,\cdot)\) \(\chi_{2523}(38,\cdot)\) \(\chi_{2523}(62,\cdot)\) \(\chi_{2523}(71,\cdot)\) \(\chi_{2523}(80,\cdot)\) \(\chi_{2523}(92,\cdot)\) \(\chi_{2523}(122,\cdot)\) \(\chi_{2523}(125,\cdot)\) \(\chi_{2523}(149,\cdot)\) \(\chi_{2523}(158,\cdot)\) \(\chi_{2523}(167,\cdot)\) \(\chi_{2523}(179,\cdot)\) \(\chi_{2523}(209,\cdot)\) \(\chi_{2523}(212,\cdot)\) \(\chi_{2523}(245,\cdot)\) \(\chi_{2523}(254,\cdot)\) \(\chi_{2523}(266,\cdot)\) \(\chi_{2523}(296,\cdot)\) \(\chi_{2523}(299,\cdot)\) \(\chi_{2523}(323,\cdot)\) \(\chi_{2523}(332,\cdot)\) \(\chi_{2523}(341,\cdot)\) \(\chi_{2523}(353,\cdot)\) \(\chi_{2523}(383,\cdot)\) \(\chi_{2523}(386,\cdot)\) \(\chi_{2523}(410,\cdot)\) \(\chi_{2523}(419,\cdot)\) \(\chi_{2523}(428,\cdot)\) \(\chi_{2523}(440,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{203})$
Fixed field: Number field defined by a degree 406 polynomial (not computed)

Values on generators

\((842,1684)\) → \((-1,e\left(\frac{149}{406}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\( \chi_{ 2523 }(158, a) \) \(-1\)\(1\)\(e\left(\frac{176}{203}\right)\)\(e\left(\frac{149}{203}\right)\)\(e\left(\frac{135}{406}\right)\)\(e\left(\frac{201}{203}\right)\)\(e\left(\frac{122}{203}\right)\)\(e\left(\frac{81}{406}\right)\)\(e\left(\frac{46}{203}\right)\)\(e\left(\frac{193}{203}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{95}{203}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2523 }(158,a) \;\) at \(\;a = \) e.g. 2