sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2523, base_ring=CyclotomicField(406))
M = H._module
chi = DirichletCharacter(H, M([203,83]))
pari:[g,chi] = znchar(Mod(254,2523))
| Modulus: | \(2523\) | |
| Conductor: | \(2523\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(406\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2523}(5,\cdot)\)
\(\chi_{2523}(35,\cdot)\)
\(\chi_{2523}(38,\cdot)\)
\(\chi_{2523}(62,\cdot)\)
\(\chi_{2523}(71,\cdot)\)
\(\chi_{2523}(80,\cdot)\)
\(\chi_{2523}(92,\cdot)\)
\(\chi_{2523}(122,\cdot)\)
\(\chi_{2523}(125,\cdot)\)
\(\chi_{2523}(149,\cdot)\)
\(\chi_{2523}(158,\cdot)\)
\(\chi_{2523}(167,\cdot)\)
\(\chi_{2523}(179,\cdot)\)
\(\chi_{2523}(209,\cdot)\)
\(\chi_{2523}(212,\cdot)\)
\(\chi_{2523}(245,\cdot)\)
\(\chi_{2523}(254,\cdot)\)
\(\chi_{2523}(266,\cdot)\)
\(\chi_{2523}(296,\cdot)\)
\(\chi_{2523}(299,\cdot)\)
\(\chi_{2523}(323,\cdot)\)
\(\chi_{2523}(332,\cdot)\)
\(\chi_{2523}(341,\cdot)\)
\(\chi_{2523}(353,\cdot)\)
\(\chi_{2523}(383,\cdot)\)
\(\chi_{2523}(386,\cdot)\)
\(\chi_{2523}(410,\cdot)\)
\(\chi_{2523}(419,\cdot)\)
\(\chi_{2523}(428,\cdot)\)
\(\chi_{2523}(440,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((842,1684)\) → \((-1,e\left(\frac{83}{406}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
| \( \chi_{ 2523 }(254, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{143}{203}\right)\) | \(e\left(\frac{83}{203}\right)\) | \(e\left(\frac{97}{406}\right)\) | \(e\left(\frac{176}{203}\right)\) | \(e\left(\frac{23}{203}\right)\) | \(e\left(\frac{383}{406}\right)\) | \(e\left(\frac{12}{203}\right)\) | \(e\left(\frac{68}{203}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{166}{203}\right)\) |
sage:chi.jacobi_sum(n)