sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(24648, base_ring=CyclotomicField(2))
M = H._module
chi = DirichletCharacter(H, M([0,1,1,1,1]))
chi.galois_orbit()
pari:[g,chi] = znchar(Mod(18485,24648))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
sage:kronecker_character(24648)
pari:znchartokronecker(g,chi)
\(\displaystyle\left(\frac{24648}{\bullet}\right)\)
| Modulus: | \(24648\) | |
| Conductor: | \(24648\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(2\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | yes |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
| Character | \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
|
\(\chi_{24648}(18485,\cdot)\)
|
\(1\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(-1\) | \(-1\) |