Properties

Label 24648.18485
Modulus $24648$
Conductor $24648$
Order $2$
Real yes
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(24648, base_ring=CyclotomicField(2)) M = H._module chi = DirichletCharacter(H, M([0,1,1,1,1]))
 
Copy content pari:[g,chi] = znchar(Mod(18485,24648))
 

Kronecker symbol representation

Copy content sage:kronecker_character(24648)
 
Copy content pari:znchartokronecker(g,chi)
 

\(\displaystyle\left(\frac{24648}{\bullet}\right)\)

Basic properties

Modulus: \(24648\)
Conductor: \(24648\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(2\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: yes
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 24648.m

\(\chi_{24648}(18485,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q\)
Fixed field: \(\Q(\sqrt{6162}) \)

Values on generators

\((18487,12325,16433,11377,12169)\) → \((1,-1,-1,-1,-1)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 24648 }(18485, a) \) \(1\)\(1\)\(-1\)\(1\)\(-1\)\(1\)\(1\)\(-1\)\(1\)\(-1\)\(-1\)\(-1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 24648 }(18485,a) \;\) at \(\;a = \) e.g. 2