Properties

Label 2349.575
Modulus $2349$
Conductor $783$
Order $126$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2349, base_ring=CyclotomicField(126)) M = H._module chi = DirichletCharacter(H, M([7,36]))
 
Copy content pari:[g,chi] = znchar(Mod(575,2349))
 

Basic properties

Modulus: \(2349\)
Conductor: \(783\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(126\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{783}(488,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2349.bm

\(\chi_{2349}(152,\cdot)\) \(\chi_{2349}(170,\cdot)\) \(\chi_{2349}(197,\cdot)\) \(\chi_{2349}(314,\cdot)\) \(\chi_{2349}(368,\cdot)\) \(\chi_{2349}(413,\cdot)\) \(\chi_{2349}(422,\cdot)\) \(\chi_{2349}(575,\cdot)\) \(\chi_{2349}(629,\cdot)\) \(\chi_{2349}(683,\cdot)\) \(\chi_{2349}(692,\cdot)\) \(\chi_{2349}(719,\cdot)\) \(\chi_{2349}(935,\cdot)\) \(\chi_{2349}(953,\cdot)\) \(\chi_{2349}(980,\cdot)\) \(\chi_{2349}(1097,\cdot)\) \(\chi_{2349}(1151,\cdot)\) \(\chi_{2349}(1196,\cdot)\) \(\chi_{2349}(1205,\cdot)\) \(\chi_{2349}(1358,\cdot)\) \(\chi_{2349}(1412,\cdot)\) \(\chi_{2349}(1466,\cdot)\) \(\chi_{2349}(1475,\cdot)\) \(\chi_{2349}(1502,\cdot)\) \(\chi_{2349}(1718,\cdot)\) \(\chi_{2349}(1736,\cdot)\) \(\chi_{2349}(1763,\cdot)\) \(\chi_{2349}(1880,\cdot)\) \(\chi_{2349}(1934,\cdot)\) \(\chi_{2349}(1979,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 126 polynomial (not computed)

Values on generators

\((407,1945)\) → \((e\left(\frac{1}{18}\right),e\left(\frac{2}{7}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\( \chi_{ 2349 }(575, a) \) \(-1\)\(1\)\(e\left(\frac{43}{126}\right)\)\(e\left(\frac{43}{63}\right)\)\(e\left(\frac{71}{126}\right)\)\(e\left(\frac{20}{63}\right)\)\(e\left(\frac{1}{42}\right)\)\(e\left(\frac{19}{21}\right)\)\(e\left(\frac{109}{126}\right)\)\(e\left(\frac{37}{63}\right)\)\(e\left(\frac{83}{126}\right)\)\(e\left(\frac{23}{63}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2349 }(575,a) \;\) at \(\;a = \) e.g. 2