sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2349, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([119,18]))
pari:[g,chi] = znchar(Mod(1205,2349))
\(\chi_{2349}(152,\cdot)\)
\(\chi_{2349}(170,\cdot)\)
\(\chi_{2349}(197,\cdot)\)
\(\chi_{2349}(314,\cdot)\)
\(\chi_{2349}(368,\cdot)\)
\(\chi_{2349}(413,\cdot)\)
\(\chi_{2349}(422,\cdot)\)
\(\chi_{2349}(575,\cdot)\)
\(\chi_{2349}(629,\cdot)\)
\(\chi_{2349}(683,\cdot)\)
\(\chi_{2349}(692,\cdot)\)
\(\chi_{2349}(719,\cdot)\)
\(\chi_{2349}(935,\cdot)\)
\(\chi_{2349}(953,\cdot)\)
\(\chi_{2349}(980,\cdot)\)
\(\chi_{2349}(1097,\cdot)\)
\(\chi_{2349}(1151,\cdot)\)
\(\chi_{2349}(1196,\cdot)\)
\(\chi_{2349}(1205,\cdot)\)
\(\chi_{2349}(1358,\cdot)\)
\(\chi_{2349}(1412,\cdot)\)
\(\chi_{2349}(1466,\cdot)\)
\(\chi_{2349}(1475,\cdot)\)
\(\chi_{2349}(1502,\cdot)\)
\(\chi_{2349}(1718,\cdot)\)
\(\chi_{2349}(1736,\cdot)\)
\(\chi_{2349}(1763,\cdot)\)
\(\chi_{2349}(1880,\cdot)\)
\(\chi_{2349}(1934,\cdot)\)
\(\chi_{2349}(1979,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((407,1945)\) → \((e\left(\frac{17}{18}\right),e\left(\frac{1}{7}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
\( \chi_{ 2349 }(1205, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{11}{126}\right)\) | \(e\left(\frac{11}{63}\right)\) | \(e\left(\frac{109}{126}\right)\) | \(e\left(\frac{52}{63}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{107}{126}\right)\) | \(e\left(\frac{8}{63}\right)\) | \(e\left(\frac{115}{126}\right)\) | \(e\left(\frac{22}{63}\right)\) |
sage:chi.jacobi_sum(n)