Properties

Label 783.488
Modulus $783$
Conductor $783$
Order $126$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(783, base_ring=CyclotomicField(126)) M = H._module chi = DirichletCharacter(H, M([7,36]))
 
Copy content pari:[g,chi] = znchar(Mod(488,783))
 

Basic properties

Modulus: \(783\)
Conductor: \(783\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(126\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 783.bg

\(\chi_{783}(20,\cdot)\) \(\chi_{783}(23,\cdot)\) \(\chi_{783}(65,\cdot)\) \(\chi_{783}(74,\cdot)\) \(\chi_{783}(83,\cdot)\) \(\chi_{783}(110,\cdot)\) \(\chi_{783}(140,\cdot)\) \(\chi_{783}(194,\cdot)\) \(\chi_{783}(227,\cdot)\) \(\chi_{783}(239,\cdot)\) \(\chi_{783}(248,\cdot)\) \(\chi_{783}(257,\cdot)\) \(\chi_{783}(281,\cdot)\) \(\chi_{783}(284,\cdot)\) \(\chi_{783}(326,\cdot)\) \(\chi_{783}(335,\cdot)\) \(\chi_{783}(344,\cdot)\) \(\chi_{783}(371,\cdot)\) \(\chi_{783}(401,\cdot)\) \(\chi_{783}(455,\cdot)\) \(\chi_{783}(488,\cdot)\) \(\chi_{783}(500,\cdot)\) \(\chi_{783}(509,\cdot)\) \(\chi_{783}(518,\cdot)\) \(\chi_{783}(542,\cdot)\) \(\chi_{783}(545,\cdot)\) \(\chi_{783}(587,\cdot)\) \(\chi_{783}(596,\cdot)\) \(\chi_{783}(605,\cdot)\) \(\chi_{783}(632,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 126 polynomial (not computed)

Values on generators

\((407,379)\) → \((e\left(\frac{1}{18}\right),e\left(\frac{2}{7}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\( \chi_{ 783 }(488, a) \) \(-1\)\(1\)\(e\left(\frac{43}{126}\right)\)\(e\left(\frac{43}{63}\right)\)\(e\left(\frac{71}{126}\right)\)\(e\left(\frac{20}{63}\right)\)\(e\left(\frac{1}{42}\right)\)\(e\left(\frac{19}{21}\right)\)\(e\left(\frac{109}{126}\right)\)\(e\left(\frac{37}{63}\right)\)\(e\left(\frac{83}{126}\right)\)\(e\left(\frac{23}{63}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 783 }(488,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 783 }(488,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 783 }(488,·),\chi_{ 783 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 783 }(488,·)) \;\) at \(\; a,b = \) e.g. 1,2