Properties

Label 2160.2081
Modulus $2160$
Conductor $27$
Order $18$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2160, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([0,0,1,0]))
 
Copy content pari:[g,chi] = znchar(Mod(2081,2160))
 

Basic properties

Modulus: \(2160\)
Conductor: \(27\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(18\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{27}(2,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2160.dk

\(\chi_{2160}(401,\cdot)\) \(\chi_{2160}(641,\cdot)\) \(\chi_{2160}(1121,\cdot)\) \(\chi_{2160}(1361,\cdot)\) \(\chi_{2160}(1841,\cdot)\) \(\chi_{2160}(2081,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

\((271,1621,2081,1297)\) → \((1,1,e\left(\frac{1}{18}\right),1)\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 2160 }(2081, a) \) \(-1\)\(1\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{17}{18}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2160 }(2081,a) \;\) at \(\;a = \) e.g. 2