Properties

Modulus $2160$
Structure \(C_{2}\times C_{2}\times C_{4}\times C_{36}\)
Order $576$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(2160)
 
pari: g = idealstar(,2160,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 576
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{2}\times C_{2}\times C_{4}\times C_{36}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{2160}(271,\cdot)$, $\chi_{2160}(1621,\cdot)$, $\chi_{2160}(2081,\cdot)$, $\chi_{2160}(1297,\cdot)$

First 32 of 576 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\)
\(\chi_{2160}(1,\cdot)\) 2160.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{2160}(7,\cdot)\) 2160.el 36 no \(1\) \(1\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{2160}(11,\cdot)\) 2160.ep 36 no \(1\) \(1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{9}\right)\)
\(\chi_{2160}(13,\cdot)\) 2160.eh 36 yes \(-1\) \(1\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{18}\right)\)
\(\chi_{2160}(17,\cdot)\) 2160.cv 12 no \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(-i\) \(-1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(i\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{2160}(19,\cdot)\) 2160.da 12 no \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(-1\) \(-i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(i\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{2160}(23,\cdot)\) 2160.ei 36 no \(-1\) \(1\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{2160}(29,\cdot)\) 2160.ds 36 yes \(-1\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{4}{9}\right)\)
\(\chi_{2160}(31,\cdot)\) 2160.dh 18 no \(-1\) \(1\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{8}{9}\right)\)
\(\chi_{2160}(37,\cdot)\) 2160.cs 12 no \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(i\) \(i\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{2160}(41,\cdot)\) 2160.dr 18 no \(-1\) \(1\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{18}\right)\)
\(\chi_{2160}(43,\cdot)\) 2160.ea 36 yes \(1\) \(1\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{2160}(47,\cdot)\) 2160.dw 36 no \(-1\) \(1\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{2160}(49,\cdot)\) 2160.dm 18 no \(1\) \(1\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{9}\right)\)
\(\chi_{2160}(53,\cdot)\) 2160.bg 4 no \(1\) \(1\) \(i\) \(-i\) \(1\) \(i\) \(i\) \(i\) \(-i\) \(1\) \(1\) \(1\)
\(\chi_{2160}(59,\cdot)\) 2160.du 36 yes \(1\) \(1\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{2}{9}\right)\)
\(\chi_{2160}(61,\cdot)\) 2160.dv 36 no \(1\) \(1\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{2160}(67,\cdot)\) 2160.ea 36 yes \(1\) \(1\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{18}\right)\)
\(\chi_{2160}(71,\cdot)\) 2160.cc 6 no \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{2160}(73,\cdot)\) 2160.cx 12 no \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(-i\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(i\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{2160}(77,\cdot)\) 2160.ec 36 yes \(1\) \(1\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{8}{9}\right)\)
\(\chi_{2160}(79,\cdot)\) 2160.dq 18 no \(-1\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{4}{9}\right)\)
\(\chi_{2160}(83,\cdot)\) 2160.ef 36 yes \(-1\) \(1\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{4}{9}\right)\)
\(\chi_{2160}(89,\cdot)\) 2160.bx 6 no \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{2160}(91,\cdot)\) 2160.ch 12 no \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(1\) \(i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(i\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{2160}(97,\cdot)\) 2160.ej 36 no \(-1\) \(1\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{9}\right)\)
\(\chi_{2160}(101,\cdot)\) 2160.en 36 no \(-1\) \(1\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{2160}(103,\cdot)\) 2160.el 36 no \(1\) \(1\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{2}{9}\right)\)
\(\chi_{2160}(107,\cdot)\) 2160.ba 4 no \(-1\) \(1\) \(i\) \(i\) \(-1\) \(-i\) \(-i\) \(i\) \(-i\) \(-1\) \(-1\) \(1\)
\(\chi_{2160}(109,\cdot)\) 2160.bm 4 no \(1\) \(1\) \(1\) \(-i\) \(-i\) \(-1\) \(i\) \(1\) \(i\) \(1\) \(i\) \(-1\)
\(\chi_{2160}(113,\cdot)\) 2160.ek 36 no \(1\) \(1\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{2160}(119,\cdot)\) 2160.dd 18 no \(1\) \(1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{18}\right)\)
Click here to search among the remaining 544 characters.