sage: H = DirichletGroup(2160)
pari: g = idealstar(,2160,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 576 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{4}\times C_{36}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{2160}(271,\cdot)$, $\chi_{2160}(1621,\cdot)$, $\chi_{2160}(2081,\cdot)$, $\chi_{2160}(1297,\cdot)$ |
First 32 of 576 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{2160}(1,\cdot)\) | 2160.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{2160}(7,\cdot)\) | 2160.el | 36 | no | \(1\) | \(1\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{9}\right)\) |
\(\chi_{2160}(11,\cdot)\) | 2160.ep | 36 | no | \(1\) | \(1\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{9}\right)\) |
\(\chi_{2160}(13,\cdot)\) | 2160.eh | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{18}\right)\) |
\(\chi_{2160}(17,\cdot)\) | 2160.cv | 12 | no | \(1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(-i\) | \(-1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(i\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{2160}(19,\cdot)\) | 2160.da | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(-1\) | \(-i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(i\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{2160}(23,\cdot)\) | 2160.ei | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{7}{18}\right)\) |
\(\chi_{2160}(29,\cdot)\) | 2160.ds | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{4}{9}\right)\) |
\(\chi_{2160}(31,\cdot)\) | 2160.dh | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{8}{9}\right)\) |
\(\chi_{2160}(37,\cdot)\) | 2160.cs | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(i\) | \(i\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{2160}(41,\cdot)\) | 2160.dr | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{18}\right)\) |
\(\chi_{2160}(43,\cdot)\) | 2160.ea | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{18}\right)\) |
\(\chi_{2160}(47,\cdot)\) | 2160.dw | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{11}{18}\right)\) |
\(\chi_{2160}(49,\cdot)\) | 2160.dm | 18 | no | \(1\) | \(1\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{9}\right)\) |
\(\chi_{2160}(53,\cdot)\) | 2160.bg | 4 | no | \(1\) | \(1\) | \(i\) | \(-i\) | \(1\) | \(i\) | \(i\) | \(i\) | \(-i\) | \(1\) | \(1\) | \(1\) |
\(\chi_{2160}(59,\cdot)\) | 2160.du | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{2}{9}\right)\) |
\(\chi_{2160}(61,\cdot)\) | 2160.dv | 36 | no | \(1\) | \(1\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{18}\right)\) |
\(\chi_{2160}(67,\cdot)\) | 2160.ea | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{18}\right)\) |
\(\chi_{2160}(71,\cdot)\) | 2160.cc | 6 | no | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{2160}(73,\cdot)\) | 2160.cx | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(-i\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(i\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{2160}(77,\cdot)\) | 2160.ec | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{8}{9}\right)\) |
\(\chi_{2160}(79,\cdot)\) | 2160.dq | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{4}{9}\right)\) |
\(\chi_{2160}(83,\cdot)\) | 2160.ef | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{4}{9}\right)\) |
\(\chi_{2160}(89,\cdot)\) | 2160.bx | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{2160}(91,\cdot)\) | 2160.ch | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(1\) | \(i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(i\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{2160}(97,\cdot)\) | 2160.ej | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{9}\right)\) |
\(\chi_{2160}(101,\cdot)\) | 2160.en | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{9}\right)\) |
\(\chi_{2160}(103,\cdot)\) | 2160.el | 36 | no | \(1\) | \(1\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{2}{9}\right)\) |
\(\chi_{2160}(107,\cdot)\) | 2160.ba | 4 | no | \(-1\) | \(1\) | \(i\) | \(i\) | \(-1\) | \(-i\) | \(-i\) | \(i\) | \(-i\) | \(-1\) | \(-1\) | \(1\) |
\(\chi_{2160}(109,\cdot)\) | 2160.bm | 4 | no | \(1\) | \(1\) | \(1\) | \(-i\) | \(-i\) | \(-1\) | \(i\) | \(1\) | \(i\) | \(1\) | \(i\) | \(-1\) |
\(\chi_{2160}(113,\cdot)\) | 2160.ek | 36 | no | \(1\) | \(1\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{13}{18}\right)\) |
\(\chi_{2160}(119,\cdot)\) | 2160.dd | 18 | no | \(1\) | \(1\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{18}\right)\) |