sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(27, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([1]))
pari:[g,chi] = znchar(Mod(2,27))
Modulus: | \(27\) | |
Conductor: | \(27\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(18\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{27}(2,\cdot)\)
\(\chi_{27}(5,\cdot)\)
\(\chi_{27}(11,\cdot)\)
\(\chi_{27}(14,\cdot)\)
\(\chi_{27}(20,\cdot)\)
\(\chi_{27}(23,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(2\) → \(e\left(\frac{1}{18}\right)\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
\( \chi_{ 27 }(2, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)