sage: from sage.modular.dirichlet import DirichletCharacter
sage: H = DirichletGroup(27, base_ring=CyclotomicField(18))
sage: M = H._module
sage: chi = DirichletCharacter(H, M([1]))
pari: [g,chi] = znchar(Mod(2,27))
Basic properties
Modulus: | \(27\) | |
Conductor: | \(27\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(18\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 27.f
\(\chi_{27}(2,\cdot)\) \(\chi_{27}(5,\cdot)\) \(\chi_{27}(11,\cdot)\) \(\chi_{27}(14,\cdot)\) \(\chi_{27}(20,\cdot)\) \(\chi_{27}(23,\cdot)\)
sage: chi.galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Values on generators
\(2\) → \(e\left(\frac{1}{18}\right)\)
Values
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
\(-1\) | \(1\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) |
Related number fields
Field of values: | \(\Q(\zeta_{9})\) |
Fixed field: | \(\Q(\zeta_{27})\) |
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
\(\displaystyle \tau_{2}(\chi_{27}(2,\cdot)) = \sum_{r\in \Z/27\Z} \chi_{27}(2,r) e\left(\frac{2r}{27}\right) = -2.3320289475+4.643451409i \)
Jacobi sum
sage: chi.jacobi_sum(n)
\( \displaystyle J(\chi_{27}(2,\cdot),\chi_{27}(1,\cdot)) = \sum_{r\in \Z/27\Z} \chi_{27}(2,r) \chi_{27}(1,1-r) = 0 \)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)
\( \displaystyle K(1,2,\chi_{27}(2,·))
= \sum_{r \in \Z/27\Z}
\chi_{27}(2,r) e\left(\frac{1 r + 2 r^{-1}}{27}\right)
= -0.0 \)