sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2160, base_ring=CyclotomicField(4))
M = H._module
chi = DirichletCharacter(H, M([0,0,0,1]))
pari:[g,chi] = znchar(Mod(1297,2160))
\(\chi_{2160}(433,\cdot)\)
\(\chi_{2160}(1297,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((271,1621,2081,1297)\) → \((1,1,1,i)\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
| \( \chi_{ 2160 }(1297, a) \) |
\(-1\) | \(1\) | \(i\) | \(1\) | \(-i\) | \(i\) | \(-1\) | \(-i\) | \(-1\) | \(1\) | \(i\) | \(1\) |
sage:chi.jacobi_sum(n)