Basic properties
| Modulus: | \(5\) | |
| Conductor: | \(5\) |
|
| Order: | \(4\) |
|
| Real: | no | |
| Primitive: | yes |
|
| Minimal: | yes | |
| Parity: | odd |
|
Galois orbit 5.c
\(\chi_{5}(2,\cdot)\) \(\chi_{5}(3,\cdot)\)
Related number fields
| Field of values: | \(\mathbb{Q}(i)\) |
| Fixed field: | \(\Q(\zeta_{5})\) |
Values on generators
\(2\) → \(i\)
Values
| \(a\) | \(-1\) | \(1\) | \(2\) | \(3\) |
| \( \chi_{ 5 }(2, a) \) | \(-1\) | \(1\) | \(i\) | \(-i\) |
Gauss sum
Jacobi sum
Kloosterman sum
Additional information
This is the first example of a Dirichlet character whose values do not all lie in the field of rational numbers.
This also makes it the first example of a Dirichlet character whose Galois orbit is nontrivial.