Properties

Label 1800.1513
Modulus $1800$
Conductor $25$
Order $20$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1800, base_ring=CyclotomicField(20)) M = H._module chi = DirichletCharacter(H, M([0,0,0,19]))
 
Copy content pari:[g,chi] = znchar(Mod(1513,1800))
 

Basic properties

Modulus: \(1800\)
Conductor: \(25\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(20\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{25}(13,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1800.cq

\(\chi_{1800}(73,\cdot)\) \(\chi_{1800}(217,\cdot)\) \(\chi_{1800}(433,\cdot)\) \(\chi_{1800}(577,\cdot)\) \(\chi_{1800}(937,\cdot)\) \(\chi_{1800}(1153,\cdot)\) \(\chi_{1800}(1297,\cdot)\) \(\chi_{1800}(1513,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: Number field defined by a degree 20 polynomial

Values on generators

\((1351,901,1001,577)\) → \((1,1,1,e\left(\frac{19}{20}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 1800 }(1513, a) \) \(-1\)\(1\)\(-i\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{7}{20}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{9}{20}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{4}{5}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1800 }(1513,a) \;\) at \(\;a = \) e.g. 2