sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1800, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([0,0,0,17]))
pari:[g,chi] = znchar(Mod(1297,1800))
\(\chi_{1800}(73,\cdot)\)
\(\chi_{1800}(217,\cdot)\)
\(\chi_{1800}(433,\cdot)\)
\(\chi_{1800}(577,\cdot)\)
\(\chi_{1800}(937,\cdot)\)
\(\chi_{1800}(1153,\cdot)\)
\(\chi_{1800}(1297,\cdot)\)
\(\chi_{1800}(1513,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1351,901,1001,577)\) → \((1,1,1,e\left(\frac{17}{20}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
| \( \chi_{ 1800 }(1297, a) \) |
\(-1\) | \(1\) | \(i\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{2}{5}\right)\) |
sage:chi.jacobi_sum(n)