sage: H = DirichletGroup(1800)
pari: g = idealstar(,1800,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 480 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{2}\times C_{60}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{1800}(1351,\cdot)$, $\chi_{1800}(901,\cdot)$, $\chi_{1800}(1001,\cdot)$, $\chi_{1800}(577,\cdot)$ |
First 32 of 480 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{1800}(1,\cdot)\) | 1800.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{1800}(7,\cdot)\) | 1800.cl | 12 | no | \(1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(i\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(i\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{1800}(11,\cdot)\) | 1800.dd | 30 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{1}{30}\right)\) |
\(\chi_{1800}(13,\cdot)\) | 1800.dl | 60 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{7}{15}\right)\) |
\(\chi_{1800}(17,\cdot)\) | 1800.ct | 20 | no | \(1\) | \(1\) | \(i\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{1}{10}\right)\) |
\(\chi_{1800}(19,\cdot)\) | 1800.bx | 10 | no | \(-1\) | \(1\) | \(1\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) |
\(\chi_{1800}(23,\cdot)\) | 1800.dp | 60 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{11}{30}\right)\) |
\(\chi_{1800}(29,\cdot)\) | 1800.di | 30 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{7}{30}\right)\) |
\(\chi_{1800}(31,\cdot)\) | 1800.de | 30 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{4}{15}\right)\) |
\(\chi_{1800}(37,\cdot)\) | 1800.cr | 20 | no | \(-1\) | \(1\) | \(i\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{4}{5}\right)\) |
\(\chi_{1800}(41,\cdot)\) | 1800.cy | 30 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{29}{30}\right)\) |
\(\chi_{1800}(43,\cdot)\) | 1800.ce | 12 | no | \(1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(-i\) | \(-1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(i\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{1800}(47,\cdot)\) | 1800.dp | 60 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{7}{30}\right)\) |
\(\chi_{1800}(49,\cdot)\) | 1800.bj | 6 | no | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{1800}(53,\cdot)\) | 1800.co | 20 | no | \(1\) | \(1\) | \(-i\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) |
\(\chi_{1800}(59,\cdot)\) | 1800.cx | 30 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{29}{30}\right)\) |
\(\chi_{1800}(61,\cdot)\) | 1800.cv | 30 | yes | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{8}{15}\right)\) |
\(\chi_{1800}(67,\cdot)\) | 1800.dr | 60 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{31}{60}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{19}{60}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{4}{15}\right)\) |
\(\chi_{1800}(71,\cdot)\) | 1800.bq | 10 | no | \(1\) | \(1\) | \(-1\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{9}{10}\right)\) |
\(\chi_{1800}(73,\cdot)\) | 1800.cq | 20 | no | \(-1\) | \(1\) | \(-i\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{1}{5}\right)\) |
\(\chi_{1800}(77,\cdot)\) | 1800.do | 60 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{11}{30}\right)\) |
\(\chi_{1800}(79,\cdot)\) | 1800.cw | 30 | no | \(-1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{11}{15}\right)\) |
\(\chi_{1800}(83,\cdot)\) | 1800.dm | 60 | yes | \(-1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{13}{30}\right)\) |
\(\chi_{1800}(89,\cdot)\) | 1800.bv | 10 | no | \(-1\) | \(1\) | \(-1\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{7}{10}\right)\) |
\(\chi_{1800}(91,\cdot)\) | 1800.br | 10 | no | \(-1\) | \(1\) | \(-1\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) |
\(\chi_{1800}(97,\cdot)\) | 1800.dq | 60 | no | \(-1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{11}{15}\right)\) |
\(\chi_{1800}(101,\cdot)\) | 1800.bb | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{1800}(103,\cdot)\) | 1800.dk | 60 | no | \(1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{19}{60}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{1}{15}\right)\) |
\(\chi_{1800}(107,\cdot)\) | 1800.r | 4 | no | \(-1\) | \(1\) | \(-i\) | \(-1\) | \(i\) | \(-i\) | \(-1\) | \(-i\) | \(-1\) | \(-1\) | \(-i\) | \(-1\) |
\(\chi_{1800}(109,\cdot)\) | 1800.bu | 10 | no | \(1\) | \(1\) | \(-1\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) |
\(\chi_{1800}(113,\cdot)\) | 1800.dn | 60 | no | \(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{37}{60}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{29}{30}\right)\) |
\(\chi_{1800}(119,\cdot)\) | 1800.cz | 30 | no | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{13}{30}\right)\) |