sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1800, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([0,15,10,18]))
pari:[g,chi] = znchar(Mod(1021,1800))
Modulus: | \(1800\) | |
Conductor: | \(1800\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(30\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1800}(61,\cdot)\)
\(\chi_{1800}(421,\cdot)\)
\(\chi_{1800}(661,\cdot)\)
\(\chi_{1800}(781,\cdot)\)
\(\chi_{1800}(1021,\cdot)\)
\(\chi_{1800}(1141,\cdot)\)
\(\chi_{1800}(1381,\cdot)\)
\(\chi_{1800}(1741,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1351,901,1001,577)\) → \((1,-1,e\left(\frac{1}{3}\right),e\left(\frac{3}{5}\right))\)
\(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 1800 }(1021, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{1}{15}\right)\) |
sage:chi.jacobi_sum(n)