L(s) = 1 | + (−0.5 + 0.866i)7-s + (−0.913 + 0.406i)11-s + (−0.913 − 0.406i)13-s + (0.309 − 0.951i)17-s + (−0.309 + 0.951i)19-s + (−0.104 + 0.994i)23-s + (0.978 + 0.207i)29-s + (−0.978 + 0.207i)31-s + (0.809 − 0.587i)37-s + (0.913 + 0.406i)41-s + (0.5 − 0.866i)43-s + (−0.978 − 0.207i)47-s + (−0.5 − 0.866i)49-s + (−0.309 − 0.951i)53-s + (−0.913 − 0.406i)59-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)7-s + (−0.913 + 0.406i)11-s + (−0.913 − 0.406i)13-s + (0.309 − 0.951i)17-s + (−0.309 + 0.951i)19-s + (−0.104 + 0.994i)23-s + (0.978 + 0.207i)29-s + (−0.978 + 0.207i)31-s + (0.809 − 0.587i)37-s + (0.913 + 0.406i)41-s + (0.5 − 0.866i)43-s + (−0.978 − 0.207i)47-s + (−0.5 − 0.866i)49-s + (−0.309 − 0.951i)53-s + (−0.913 − 0.406i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.400 - 0.916i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.400 - 0.916i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1996030181 - 0.3050253838i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1996030181 - 0.3050253838i\) |
\(L(1)\) |
\(\approx\) |
\(0.7629034789 + 0.04730855568i\) |
\(L(1)\) |
\(\approx\) |
\(0.7629034789 + 0.04730855568i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-0.5 + 0.866i)T \) |
| 11 | \( 1 + (-0.913 + 0.406i)T \) |
| 13 | \( 1 + (-0.913 - 0.406i)T \) |
| 17 | \( 1 + (0.309 - 0.951i)T \) |
| 19 | \( 1 + (-0.309 + 0.951i)T \) |
| 23 | \( 1 + (-0.104 + 0.994i)T \) |
| 29 | \( 1 + (0.978 + 0.207i)T \) |
| 31 | \( 1 + (-0.978 + 0.207i)T \) |
| 37 | \( 1 + (0.809 - 0.587i)T \) |
| 41 | \( 1 + (0.913 + 0.406i)T \) |
| 43 | \( 1 + (0.5 - 0.866i)T \) |
| 47 | \( 1 + (-0.978 - 0.207i)T \) |
| 53 | \( 1 + (-0.309 - 0.951i)T \) |
| 59 | \( 1 + (-0.913 - 0.406i)T \) |
| 61 | \( 1 + (-0.913 + 0.406i)T \) |
| 67 | \( 1 + (0.978 - 0.207i)T \) |
| 71 | \( 1 + (0.309 + 0.951i)T \) |
| 73 | \( 1 + (-0.809 - 0.587i)T \) |
| 79 | \( 1 + (-0.978 - 0.207i)T \) |
| 83 | \( 1 + (-0.669 - 0.743i)T \) |
| 89 | \( 1 + (-0.809 - 0.587i)T \) |
| 97 | \( 1 + (-0.978 - 0.207i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.283488313243207121463425251710, −19.68211523777665085502948756536, −19.085006802942297160515955747686, −18.25098037110785573773630746604, −17.363956467795407491876352640, −16.75359822493892609808448193057, −16.125235323777538553086004043623, −15.27352424730885009395030066220, −14.44148454005162840967894114945, −13.77520774767211682610558448494, −12.844847172375811610459080285968, −12.53398608420896316271935190585, −11.25376981410122035857509922041, −10.6613233909308600391743599869, −9.971071735340560710735714639, −9.17876147920165232241215185375, −8.15200957199051457383036394195, −7.51955854111256700787298961114, −6.63269329813213884848340361196, −5.9416343113384610380483577264, −4.76456727373161894442221900020, −4.22172175647755017019394473144, −3.06284185575478326677160889841, −2.39346838313217888247782639510, −1.04538988746704214851966616480,
0.13798281064263391231960135062, 1.75208999333379420817277533400, 2.65190237416191349059472883817, 3.28021929224850461048314992118, 4.5478198560107238983738146229, 5.38231060332351784343035920176, 5.910970826409079080927695703334, 7.10403436458250397125578999575, 7.70284771919395020963715359491, 8.572678551701085837876450187116, 9.62312108715020415227299936508, 9.9191828142929948469195496131, 10.96384811632637881934277964483, 11.89531598007165404014313958411, 12.55838486297744815991943812140, 13.03601236534866024814147854029, 14.16966743984670433796094203188, 14.78541881316916708939566028288, 15.67347836746482050684995920604, 16.0904674833471124892021589091, 17.0074223157739702718484481350, 18.01058793238524474176720030934, 18.33445248694013046513231124749, 19.27772092727912822647121187629, 19.86776098545257720567096942316