Properties

Label 16830.kl
Modulus $16830$
Conductor $8415$
Order $120$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(16830, base_ring=CyclotomicField(120)) M = H._module chi = DirichletCharacter(H, M([40,60,48,45])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(49,16830)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(16830\)
Conductor: \(8415\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(120\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 8415.kh
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{120})$
Fixed field: Number field defined by a degree 120 polynomial (not computed)

First 31 of 32 characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(13\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\) \(47\)
\(\chi_{16830}(49,\cdot)\) \(1\) \(1\) \(e\left(\frac{91}{120}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{1}{120}\right)\) \(e\left(\frac{53}{120}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{119}{120}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{8}{15}\right)\)
\(\chi_{16830}(229,\cdot)\) \(1\) \(1\) \(e\left(\frac{109}{120}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{79}{120}\right)\) \(e\left(\frac{107}{120}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{41}{120}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{15}\right)\)
\(\chi_{16830}(1039,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{120}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{61}{120}\right)\) \(e\left(\frac{113}{120}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{59}{120}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{8}{15}\right)\)
\(\chi_{16830}(1879,\cdot)\) \(1\) \(1\) \(e\left(\frac{89}{120}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{59}{120}\right)\) \(e\left(\frac{7}{120}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{61}{120}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{15}\right)\)
\(\chi_{16830}(2599,\cdot)\) \(1\) \(1\) \(e\left(\frac{107}{120}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{17}{120}\right)\) \(e\left(\frac{61}{120}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{103}{120}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{15}\right)\)
\(\chi_{16830}(3589,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{120}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{77}{120}\right)\) \(e\left(\frac{1}{120}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{43}{120}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{15}\right)\)
\(\chi_{16830}(3919,\cdot)\) \(1\) \(1\) \(e\left(\frac{97}{120}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{67}{120}\right)\) \(e\left(\frac{71}{120}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{53}{120}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{15}\right)\)
\(\chi_{16830}(4129,\cdot)\) \(1\) \(1\) \(e\left(\frac{83}{120}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{113}{120}\right)\) \(e\left(\frac{109}{120}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{7}{120}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{4}{15}\right)\)
\(\chi_{16830}(5119,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{120}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{53}{120}\right)\) \(e\left(\frac{49}{120}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{67}{120}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{4}{15}\right)\)
\(\chi_{16830}(5449,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{120}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{43}{120}\right)\) \(e\left(\frac{119}{120}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{77}{120}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{14}{15}\right)\)
\(\chi_{16830}(5659,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{120}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{41}{120}\right)\) \(e\left(\frac{13}{120}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{79}{120}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{13}{15}\right)\)
\(\chi_{16830}(5839,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{120}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{119}{120}\right)\) \(e\left(\frac{67}{120}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{1}{120}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{15}\right)\)
\(\chi_{16830}(6169,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{120}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{49}{120}\right)\) \(e\left(\frac{77}{120}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{71}{120}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{15}\right)\)
\(\chi_{16830}(6649,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{120}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{101}{120}\right)\) \(e\left(\frac{73}{120}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{19}{120}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{13}{15}\right)\)
\(\chi_{16830}(6979,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{120}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{91}{120}\right)\) \(e\left(\frac{23}{120}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{29}{120}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{8}{15}\right)\)
\(\chi_{16830}(7159,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{120}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{109}{120}\right)\) \(e\left(\frac{17}{120}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{11}{120}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{15}\right)\)
\(\chi_{16830}(7879,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{120}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{7}{120}\right)\) \(e\left(\frac{11}{120}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{113}{120}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{15}\right)\)
\(\chi_{16830}(9409,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{120}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{103}{120}\right)\) \(e\left(\frac{59}{120}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{17}{120}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{14}{15}\right)\)
\(\chi_{16830}(9529,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{120}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{107}{120}\right)\) \(e\left(\frac{31}{120}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{13}{120}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{15}\right)\)
\(\chi_{16830}(10939,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{120}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{31}{120}\right)\) \(e\left(\frac{83}{120}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{89}{120}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{8}{15}\right)\)
\(\chi_{16830}(11059,\cdot)\) \(1\) \(1\) \(e\left(\frac{113}{120}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{83}{120}\right)\) \(e\left(\frac{79}{120}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{37}{120}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{4}{15}\right)\)
\(\chi_{16830}(11779,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{120}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{89}{120}\right)\) \(e\left(\frac{37}{120}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{31}{120}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{15}\right)\)
\(\chi_{16830}(12589,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{120}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{11}{120}\right)\) \(e\left(\frac{103}{120}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{109}{120}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{13}{15}\right)\)
\(\chi_{16830}(12769,\cdot)\) \(1\) \(1\) \(e\left(\frac{119}{120}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{29}{120}\right)\) \(e\left(\frac{97}{120}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{91}{120}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{15}\right)\)
\(\chi_{16830}(13099,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{120}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{19}{120}\right)\) \(e\left(\frac{47}{120}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{101}{120}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{15}\right)\)
\(\chi_{16830}(13489,\cdot)\) \(1\) \(1\) \(e\left(\frac{77}{120}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{47}{120}\right)\) \(e\left(\frac{91}{120}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{73}{120}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{15}\right)\)
\(\chi_{16830}(13819,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{120}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{97}{120}\right)\) \(e\left(\frac{101}{120}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{23}{120}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{15}\right)\)
\(\chi_{16830}(14809,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{120}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{37}{120}\right)\) \(e\left(\frac{41}{120}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{83}{120}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{15}\right)\)
\(\chi_{16830}(15019,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{120}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{23}{120}\right)\) \(e\left(\frac{19}{120}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{97}{120}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{4}{15}\right)\)
\(\chi_{16830}(15349,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{120}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{73}{120}\right)\) \(e\left(\frac{29}{120}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{47}{120}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{14}{15}\right)\)
\(\chi_{16830}(16339,\cdot)\) \(1\) \(1\) \(e\left(\frac{103}{120}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{13}{120}\right)\) \(e\left(\frac{89}{120}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{107}{120}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{14}{15}\right)\)