Properties

Label 8415.kh
Modulus $8415$
Conductor $8415$
Order $120$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8415, base_ring=CyclotomicField(120)) M = H._module chi = DirichletCharacter(H, M([40,60,48,45])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(49,8415)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8415\)
Conductor: \(8415\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(120\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{120})$
Fixed field: Number field defined by a degree 120 polynomial (not computed)

First 31 of 32 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(7\) \(8\) \(13\) \(14\) \(16\) \(19\) \(23\) \(26\)
\(\chi_{8415}(49,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{91}{120}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{29}{120}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{11}{20}\right)\)
\(\chi_{8415}(229,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{109}{120}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{11}{120}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{9}{20}\right)\)
\(\chi_{8415}(994,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{13}{120}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{107}{120}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{13}{20}\right)\)
\(\chi_{8415}(1039,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{31}{120}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{89}{120}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{11}{20}\right)\)
\(\chi_{8415}(1114,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{17}{120}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{103}{120}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{17}{20}\right)\)
\(\chi_{8415}(1879,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{89}{120}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{31}{120}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{9}{20}\right)\)
\(\chi_{8415}(2524,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{61}{120}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{59}{120}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{1}{20}\right)\)
\(\chi_{8415}(2599,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{107}{120}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{13}{120}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{7}{20}\right)\)
\(\chi_{8415}(2644,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{113}{120}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{7}{120}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{13}{20}\right)\)
\(\chi_{8415}(3364,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{59}{120}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{61}{120}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{19}{20}\right)\)
\(\chi_{8415}(3589,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{47}{120}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{73}{120}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{7}{20}\right)\)
\(\chi_{8415}(3919,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{97}{120}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{23}{120}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{17}{20}\right)\)
\(\chi_{8415}(4129,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{83}{120}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{37}{120}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{3}{20}\right)\)
\(\chi_{8415}(4174,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{41}{120}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{79}{120}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{1}{20}\right)\)
\(\chi_{8415}(4354,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{119}{120}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{1}{120}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{19}{20}\right)\)
\(\chi_{8415}(4684,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{49}{120}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{71}{120}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{9}{20}\right)\)
\(\chi_{8415}(5074,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{77}{120}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{43}{120}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{17}{20}\right)\)
\(\chi_{8415}(5119,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{23}{120}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{97}{120}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{3}{20}\right)\)
\(\chi_{8415}(5404,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{67}{120}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{53}{120}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{7}{20}\right)\)
\(\chi_{8415}(5449,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{73}{120}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{47}{120}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{13}{20}\right)\)
\(\chi_{8415}(5659,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{11}{120}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{109}{120}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{11}{20}\right)\)
\(\chi_{8415}(5839,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{29}{120}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{91}{120}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{9}{20}\right)\)
\(\chi_{8415}(6169,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{19}{120}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{101}{120}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{19}{20}\right)\)
\(\chi_{8415}(6394,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{7}{120}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{113}{120}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{7}{20}\right)\)
\(\chi_{8415}(6604,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{53}{120}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{67}{120}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{13}{20}\right)\)
\(\chi_{8415}(6649,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{71}{120}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{49}{120}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{11}{20}\right)\)
\(\chi_{8415}(6934,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{43}{120}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{77}{120}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{3}{20}\right)\)
\(\chi_{8415}(6979,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{1}{120}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{119}{120}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{1}{20}\right)\)
\(\chi_{8415}(7159,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{79}{120}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{41}{120}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{19}{20}\right)\)
\(\chi_{8415}(7879,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{37}{120}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{83}{120}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{17}{20}\right)\)
\(\chi_{8415}(7924,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{103}{120}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{17}{120}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{3}{20}\right)\)