Properties

Label 16830.5119
Modulus $16830$
Conductor $8415$
Order $120$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(16830, base_ring=CyclotomicField(120)) M = H._module chi = DirichletCharacter(H, M([80,60,24,105]))
 
Copy content pari:[g,chi] = znchar(Mod(5119,16830))
 

Basic properties

Modulus: \(16830\)
Conductor: \(8415\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(120\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{8415}(5119,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 16830.kl

\(\chi_{16830}(49,\cdot)\) \(\chi_{16830}(229,\cdot)\) \(\chi_{16830}(1039,\cdot)\) \(\chi_{16830}(1879,\cdot)\) \(\chi_{16830}(2599,\cdot)\) \(\chi_{16830}(3589,\cdot)\) \(\chi_{16830}(3919,\cdot)\) \(\chi_{16830}(4129,\cdot)\) \(\chi_{16830}(5119,\cdot)\) \(\chi_{16830}(5449,\cdot)\) \(\chi_{16830}(5659,\cdot)\) \(\chi_{16830}(5839,\cdot)\) \(\chi_{16830}(6169,\cdot)\) \(\chi_{16830}(6649,\cdot)\) \(\chi_{16830}(6979,\cdot)\) \(\chi_{16830}(7159,\cdot)\) \(\chi_{16830}(7879,\cdot)\) \(\chi_{16830}(9409,\cdot)\) \(\chi_{16830}(9529,\cdot)\) \(\chi_{16830}(10939,\cdot)\) \(\chi_{16830}(11059,\cdot)\) \(\chi_{16830}(11779,\cdot)\) \(\chi_{16830}(12589,\cdot)\) \(\chi_{16830}(12769,\cdot)\) \(\chi_{16830}(13099,\cdot)\) \(\chi_{16830}(13489,\cdot)\) \(\chi_{16830}(13819,\cdot)\) \(\chi_{16830}(14809,\cdot)\) \(\chi_{16830}(15019,\cdot)\) \(\chi_{16830}(15349,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{120})$
Fixed field: Number field defined by a degree 120 polynomial (not computed)

Values on generators

\((7481,3367,1531,8911)\) → \((e\left(\frac{2}{3}\right),-1,e\left(\frac{1}{5}\right),e\left(\frac{7}{8}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(13\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)\(47\)
\( \chi_{ 16830 }(5119, a) \) \(1\)\(1\)\(e\left(\frac{23}{120}\right)\)\(e\left(\frac{8}{15}\right)\)\(e\left(\frac{17}{20}\right)\)\(e\left(\frac{23}{24}\right)\)\(e\left(\frac{53}{120}\right)\)\(e\left(\frac{49}{120}\right)\)\(e\left(\frac{31}{40}\right)\)\(e\left(\frac{67}{120}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{4}{15}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 16830 }(5119,a) \;\) at \(\;a = \) e.g. 2