sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(164025, base_ring=CyclotomicField(14580))
M = H._module
chi = DirichletCharacter(H, M([13280,729]))
pari:[g,chi] = znchar(Mod(1252,164025))
\(\chi_{164025}(37,\cdot)\)
\(\chi_{164025}(73,\cdot)\)
\(\chi_{164025}(127,\cdot)\)
\(\chi_{164025}(172,\cdot)\)
\(\chi_{164025}(208,\cdot)\)
\(\chi_{164025}(253,\cdot)\)
\(\chi_{164025}(262,\cdot)\)
\(\chi_{164025}(388,\cdot)\)
\(\chi_{164025}(397,\cdot)\)
\(\chi_{164025}(442,\cdot)\)
\(\chi_{164025}(478,\cdot)\)
\(\chi_{164025}(523,\cdot)\)
\(\chi_{164025}(577,\cdot)\)
\(\chi_{164025}(613,\cdot)\)
\(\chi_{164025}(658,\cdot)\)
\(\chi_{164025}(667,\cdot)\)
\(\chi_{164025}(712,\cdot)\)
\(\chi_{164025}(748,\cdot)\)
\(\chi_{164025}(802,\cdot)\)
\(\chi_{164025}(847,\cdot)\)
\(\chi_{164025}(883,\cdot)\)
\(\chi_{164025}(928,\cdot)\)
\(\chi_{164025}(937,\cdot)\)
\(\chi_{164025}(1063,\cdot)\)
\(\chi_{164025}(1072,\cdot)\)
\(\chi_{164025}(1117,\cdot)\)
\(\chi_{164025}(1153,\cdot)\)
\(\chi_{164025}(1198,\cdot)\)
\(\chi_{164025}(1252,\cdot)\)
\(\chi_{164025}(1288,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((59051,104977)\) → \((e\left(\frac{664}{729}\right),e\left(\frac{1}{20}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) |
| \( \chi_{ 164025 }(1252, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{14009}{14580}\right)\) | \(e\left(\frac{6719}{7290}\right)\) | \(e\left(\frac{349}{2916}\right)\) | \(e\left(\frac{4289}{4860}\right)\) | \(e\left(\frac{851}{3645}\right)\) | \(e\left(\frac{9931}{14580}\right)\) | \(e\left(\frac{587}{7290}\right)\) | \(e\left(\frac{3074}{3645}\right)\) | \(e\left(\frac{3439}{4860}\right)\) | \(e\left(\frac{1327}{2430}\right)\) |
sage:chi.jacobi_sum(n)