Properties

Label 164025.523
Modulus $164025$
Conductor $54675$
Order $14580$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(164025, base_ring=CyclotomicField(14580)) M = H._module chi = DirichletCharacter(H, M([6800,8019]))
 
Copy content pari:[g,chi] = znchar(Mod(523,164025))
 

Basic properties

Modulus: \(164025\)
Conductor: \(54675\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(14580\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{54675}(6448,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 164025.dl

\(\chi_{164025}(37,\cdot)\) \(\chi_{164025}(73,\cdot)\) \(\chi_{164025}(127,\cdot)\) \(\chi_{164025}(172,\cdot)\) \(\chi_{164025}(208,\cdot)\) \(\chi_{164025}(253,\cdot)\) \(\chi_{164025}(262,\cdot)\) \(\chi_{164025}(388,\cdot)\) \(\chi_{164025}(397,\cdot)\) \(\chi_{164025}(442,\cdot)\) \(\chi_{164025}(478,\cdot)\) \(\chi_{164025}(523,\cdot)\) \(\chi_{164025}(577,\cdot)\) \(\chi_{164025}(613,\cdot)\) \(\chi_{164025}(658,\cdot)\) \(\chi_{164025}(667,\cdot)\) \(\chi_{164025}(712,\cdot)\) \(\chi_{164025}(748,\cdot)\) \(\chi_{164025}(802,\cdot)\) \(\chi_{164025}(847,\cdot)\) \(\chi_{164025}(883,\cdot)\) \(\chi_{164025}(928,\cdot)\) \(\chi_{164025}(937,\cdot)\) \(\chi_{164025}(1063,\cdot)\) \(\chi_{164025}(1072,\cdot)\) \(\chi_{164025}(1117,\cdot)\) \(\chi_{164025}(1153,\cdot)\) \(\chi_{164025}(1198,\cdot)\) \(\chi_{164025}(1252,\cdot)\) \(\chi_{164025}(1288,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{14580})$
Fixed field: Number field defined by a degree 14580 polynomial (not computed)

Values on generators

\((59051,104977)\) → \((e\left(\frac{340}{729}\right),e\left(\frac{11}{20}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 164025 }(523, a) \) \(-1\)\(1\)\(e\left(\frac{239}{14580}\right)\)\(e\left(\frac{239}{7290}\right)\)\(e\left(\frac{1483}{2916}\right)\)\(e\left(\frac{239}{4860}\right)\)\(e\left(\frac{1661}{3645}\right)\)\(e\left(\frac{9121}{14580}\right)\)\(e\left(\frac{3827}{7290}\right)\)\(e\left(\frac{239}{3645}\right)\)\(e\left(\frac{2629}{4860}\right)\)\(e\left(\frac{517}{2430}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 164025 }(523,a) \;\) at \(\;a = \) e.g. 2