sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(54675, base_ring=CyclotomicField(14580))
M = H._module
chi = DirichletCharacter(H, M([13280,729]))
pari:[g,chi] = znchar(Mod(31477,54675))
| Modulus: | \(54675\) | |
| Conductor: | \(54675\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(14580\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{54675}(13,\cdot)\)
\(\chi_{54675}(22,\cdot)\)
\(\chi_{54675}(52,\cdot)\)
\(\chi_{54675}(58,\cdot)\)
\(\chi_{54675}(67,\cdot)\)
\(\chi_{54675}(88,\cdot)\)
\(\chi_{54675}(97,\cdot)\)
\(\chi_{54675}(103,\cdot)\)
\(\chi_{54675}(112,\cdot)\)
\(\chi_{54675}(133,\cdot)\)
\(\chi_{54675}(142,\cdot)\)
\(\chi_{54675}(148,\cdot)\)
\(\chi_{54675}(178,\cdot)\)
\(\chi_{54675}(187,\cdot)\)
\(\chi_{54675}(202,\cdot)\)
\(\chi_{54675}(223,\cdot)\)
\(\chi_{54675}(238,\cdot)\)
\(\chi_{54675}(247,\cdot)\)
\(\chi_{54675}(277,\cdot)\)
\(\chi_{54675}(283,\cdot)\)
\(\chi_{54675}(292,\cdot)\)
\(\chi_{54675}(313,\cdot)\)
\(\chi_{54675}(322,\cdot)\)
\(\chi_{54675}(328,\cdot)\)
\(\chi_{54675}(337,\cdot)\)
\(\chi_{54675}(358,\cdot)\)
\(\chi_{54675}(367,\cdot)\)
\(\chi_{54675}(373,\cdot)\)
\(\chi_{54675}(403,\cdot)\)
\(\chi_{54675}(412,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((4376,50302)\) → \((e\left(\frac{664}{729}\right),e\left(\frac{1}{20}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) |
| \( \chi_{ 54675 }(31477, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{14009}{14580}\right)\) | \(e\left(\frac{6719}{7290}\right)\) | \(e\left(\frac{349}{2916}\right)\) | \(e\left(\frac{4289}{4860}\right)\) | \(e\left(\frac{851}{3645}\right)\) | \(e\left(\frac{9931}{14580}\right)\) | \(e\left(\frac{587}{7290}\right)\) | \(e\left(\frac{3074}{3645}\right)\) | \(e\left(\frac{3439}{4860}\right)\) | \(e\left(\frac{1327}{2430}\right)\) |
sage:chi.jacobi_sum(n)