sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1344, base_ring=CyclotomicField(2))
M = H._module
chi = DirichletCharacter(H, M([0,0,0,1]))
pari:[g,chi] = znchar(Mod(769,1344))
\(\chi_{1344}(769,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((127,1093,449,577)\) → \((1,1,1,-1)\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) |
\( \chi_{ 1344 }(769, a) \) |
\(-1\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(-1\) | \(-1\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(1\) |
sage:chi.jacobi_sum(n)