sage: H = DirichletGroup(1344)
pari: g = idealstar(,1344,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 384 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{48}\times C_{2}\times C_{2}\times C_{2}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{1344}(127,\cdot)$, $\chi_{1344}(1093,\cdot)$, $\chi_{1344}(449,\cdot)$, $\chi_{1344}(577,\cdot)$ |
First 32 of 384 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{1344}(1,\cdot)\) | 1344.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{1344}(5,\cdot)\) | 1344.cw | 48 | yes | \(1\) | \(1\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{48}\right)\) |
\(\chi_{1344}(11,\cdot)\) | 1344.cx | 48 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{48}\right)\) |
\(\chi_{1344}(13,\cdot)\) | 1344.ck | 16 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(-i\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(1\) | \(e\left(\frac{7}{16}\right)\) |
\(\chi_{1344}(17,\cdot)\) | 1344.bw | 12 | no | \(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(-i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-i\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) |
\(\chi_{1344}(19,\cdot)\) | 1344.cy | 48 | no | \(1\) | \(1\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{29}{48}\right)\) |
\(\chi_{1344}(23,\cdot)\) | 1344.cp | 24 | no | \(1\) | \(1\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{13}{24}\right)\) |
\(\chi_{1344}(25,\cdot)\) | 1344.cr | 24 | no | \(1\) | \(1\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{24}\right)\) |
\(\chi_{1344}(29,\cdot)\) | 1344.cf | 16 | no | \(-1\) | \(1\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(-i\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(-1\) | \(e\left(\frac{3}{16}\right)\) |
\(\chi_{1344}(31,\cdot)\) | 1344.bb | 6 | no | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{1344}(37,\cdot)\) | 1344.cz | 48 | no | \(1\) | \(1\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{35}{48}\right)\) |
\(\chi_{1344}(41,\cdot)\) | 1344.bo | 8 | no | \(1\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(-1\) | \(e\left(\frac{5}{8}\right)\) | \(-i\) | \(-i\) | \(e\left(\frac{1}{8}\right)\) | \(-1\) | \(e\left(\frac{7}{8}\right)\) |
\(\chi_{1344}(43,\cdot)\) | 1344.cl | 16 | no | \(-1\) | \(1\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(-i\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(1\) | \(e\left(\frac{5}{16}\right)\) |
\(\chi_{1344}(47,\cdot)\) | 1344.bz | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) |
\(\chi_{1344}(53,\cdot)\) | 1344.da | 48 | yes | \(-1\) | \(1\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{48}\right)\) |
\(\chi_{1344}(55,\cdot)\) | 1344.bu | 8 | no | \(1\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(-i\) | \(-i\) | \(e\left(\frac{1}{8}\right)\) | \(1\) | \(e\left(\frac{3}{8}\right)\) |
\(\chi_{1344}(59,\cdot)\) | 1344.db | 48 | yes | \(-1\) | \(1\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{43}{48}\right)\) |
\(\chi_{1344}(61,\cdot)\) | 1344.cv | 48 | no | \(-1\) | \(1\) | \(e\left(\frac{17}{48}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{17}{48}\right)\) |
\(\chi_{1344}(65,\cdot)\) | 1344.bn | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{1344}(67,\cdot)\) | 1344.cu | 48 | no | \(-1\) | \(1\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{48}\right)\) |
\(\chi_{1344}(71,\cdot)\) | 1344.bs | 8 | no | \(1\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(-i\) | \(i\) | \(e\left(\frac{3}{8}\right)\) | \(-1\) | \(e\left(\frac{5}{8}\right)\) |
\(\chi_{1344}(73,\cdot)\) | 1344.co | 24 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{17}{24}\right)\) |
\(\chi_{1344}(79,\cdot)\) | 1344.bx | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) |
\(\chi_{1344}(83,\cdot)\) | 1344.ce | 16 | yes | \(-1\) | \(1\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(i\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(-1\) | \(e\left(\frac{15}{16}\right)\) |
\(\chi_{1344}(85,\cdot)\) | 1344.cg | 16 | no | \(1\) | \(1\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(-i\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(-1\) | \(e\left(\frac{5}{16}\right)\) |
\(\chi_{1344}(89,\cdot)\) | 1344.ct | 24 | no | \(1\) | \(1\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{19}{24}\right)\) |
\(\chi_{1344}(95,\cdot)\) | 1344.bd | 6 | no | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{1344}(97,\cdot)\) | 1344.l | 2 | no | \(-1\) | \(1\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(-1\) |
\(\chi_{1344}(101,\cdot)\) | 1344.cw | 48 | yes | \(1\) | \(1\) | \(e\left(\frac{43}{48}\right)\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{19}{48}\right)\) |
\(\chi_{1344}(103,\cdot)\) | 1344.cn | 24 | no | \(1\) | \(1\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{19}{24}\right)\) |
\(\chi_{1344}(107,\cdot)\) | 1344.cx | 48 | yes | \(1\) | \(1\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{47}{48}\right)\) |
\(\chi_{1344}(109,\cdot)\) | 1344.cz | 48 | no | \(1\) | \(1\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{13}{48}\right)\) |