Properties

Label 1323.127
Modulus $1323$
Conductor $441$
Order $21$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1323, base_ring=CyclotomicField(42)) M = H._module chi = DirichletCharacter(H, M([28,18]))
 
Copy content pari:[g,chi] = znchar(Mod(127,1323))
 

Basic properties

Modulus: \(1323\)
Conductor: \(441\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(21\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{441}(421,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1323.bm

\(\chi_{1323}(64,\cdot)\) \(\chi_{1323}(127,\cdot)\) \(\chi_{1323}(253,\cdot)\) \(\chi_{1323}(316,\cdot)\) \(\chi_{1323}(505,\cdot)\) \(\chi_{1323}(631,\cdot)\) \(\chi_{1323}(694,\cdot)\) \(\chi_{1323}(820,\cdot)\) \(\chi_{1323}(1009,\cdot)\) \(\chi_{1323}(1072,\cdot)\) \(\chi_{1323}(1198,\cdot)\) \(\chi_{1323}(1261,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: Number field defined by a degree 21 polynomial

Values on generators

\((785,1081)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{3}{7}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(17\)\(19\)
\( \chi_{ 1323 }(127, a) \) \(1\)\(1\)\(e\left(\frac{17}{21}\right)\)\(e\left(\frac{13}{21}\right)\)\(e\left(\frac{16}{21}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{17}{21}\right)\)\(e\left(\frac{10}{21}\right)\)\(e\left(\frac{5}{21}\right)\)\(e\left(\frac{5}{7}\right)\)\(1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1323 }(127,a) \;\) at \(\;a = \) e.g. 2