Properties

Label 1323.bm
Modulus $1323$
Conductor $441$
Order $21$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1323, base_ring=CyclotomicField(42)) M = H._module chi = DirichletCharacter(H, M([14,30])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(64,1323)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1323\)
Conductor: \(441\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(21\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 441.ba
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: Number field defined by a degree 21 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(8\) \(10\) \(11\) \(13\) \(16\) \(17\) \(19\)
\(\chi_{1323}(64,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{6}{7}\right)\) \(1\)
\(\chi_{1323}(127,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{5}{7}\right)\) \(1\)
\(\chi_{1323}(253,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{3}{7}\right)\) \(1\)
\(\chi_{1323}(316,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{2}{7}\right)\) \(1\)
\(\chi_{1323}(505,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{6}{7}\right)\) \(1\)
\(\chi_{1323}(631,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{4}{7}\right)\) \(1\)
\(\chi_{1323}(694,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{3}{7}\right)\) \(1\)
\(\chi_{1323}(820,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{1}{7}\right)\) \(1\)
\(\chi_{1323}(1009,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{5}{7}\right)\) \(1\)
\(\chi_{1323}(1072,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{4}{7}\right)\) \(1\)
\(\chi_{1323}(1198,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{2}{7}\right)\) \(1\)
\(\chi_{1323}(1261,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{1}{7}\right)\) \(1\)