![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(12, base_ring=CyclotomicField(2))
M = H._module
chi = DirichletCharacter(H, M([1,1]))
chi.galois_orbit()
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(12, base_ring=CyclotomicField(2))
M = H._module
chi = DirichletCharacter(H, M([1,1]))
chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(11,12))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:[g,chi] = znchar(Mod(11,12))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
      
    
    
        ![Copy content]() sage:kronecker_character(12)
        sage:kronecker_character(12)
         
     
    
    
        ![Copy content]() pari:znchartokronecker(g,chi)
        pari:znchartokronecker(g,chi)
         
     
    
     \(\displaystyle\left(\frac{12}{\bullet}\right)\) 
  
  
   | Modulus: | \(12\) |  | 
   | Conductor: | \(12\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(2\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | yes | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | even | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   |